
PROPER TAIL CALLS FROM FIRST-CLASS CONTINUATIONS IN

JAVASCRIPT

by

Caner Derici

Undergraduate Program in Computer Science Department

Istanbul Bilgi University

2010

ii

PROPER TAIL CALLS FROM FIRST-CLASS CONTINUATIONS IN

JAVASCRIPT

APPROVED BY:

Chris Stephenson

(Thesis Supervisor)

Assoc. Prof. Shriram Krishnamurthi

Assoc Prof. Alpaslan Parlakçı

Matthew Edwards

DATE OF APPROVAL: Day.Month.Year

iii

ACKNOWLEDGEMENTS

My original dept is to Chris Stephenson, who first taught me Scheme when I

came here at Bilgi. However, along the way, Scheme was very little contribution to

those marvelous tons of knowledge that I learned from him. Chris has been wise and

hippy, understanding and difficult, and has consistently challenged me over the years.

He made me the computer scientist that I am today, for which no thanks are enough.

In between, I have been assisted by numerous people. Remzi Emre Başar lis-

tened me for all the time except mornings, noons, afternoons, nights... He linearized

my (originally not) train of thoughts and consistently expected and obtained better

from me than I myself did. Since from the start, Shriram Krishnamurthi helped me

with his insightful thoughts and advices that made my thinking clear and precise. De-

spite a 11.000 kilometers, he helped me a lot to improve myself a one step further in my

professional career. Danny Yoo and Ethan Cecchetti have helped improve this study

by their implementations. Danny has developed Moby itself, and helped me all the

time by checking all codes that I produced and gave me a lot of insights and advices

about implementation issues. Ethan studied on and implemented compiler-side trans-

formation. Once there, my friends and instructors have been wonderful resources and

supports: Ayşe Karaca, Elif Pınar Hacıbeyog̃lu, Boran Puhalıog̃lu, Bahar Beyaznar,

Olcay Demirkesen, Ercan Muşkara, Seda Albayrak, Melis Yüksel, Yig̃it Yig̃itbaşı, Cey-

hun Aytekin, Ruhan Alpaydın, Dicle Öztürk, Elena Battini Sönmez helped give me a

wider perspective and fresh ideas as well as a valuable support whenever I got stuck

with a professional or personal issue. My instructors Alpaslan Parlakçı and Matthew

Edwards have helped improve this dissertation.

Finally, my greatest dept is to my family, Muharrem Derici, Ayşe Derici, Özlem

Derici and Rüştü Derici. They have supported me all my life in any way that they can,

and encouraged me at every step as I have pursued my indefinite wonders.

iv

ABSTRACT

PROPER TAIL CALLS FROM FIRST-CLASS

CONTINUATIONS IN JAVASCRIPT

Implementing proper tail calls can pose a challenge if a target machine makes

no provisions for accessing and re-installing a run-time stack. Classical techniques

proposed over the years often have little significance, mainly due to limited character-

istics, such as optimizing only the recursive tail calls. As a result of this restrictions,

programmers are often forced to write unnatural programs in which they can access

and manipulate data only with imperative constructs. This leads to critically unnat-

ural program structures which are difficult to read, debug or maintain over long time

periods.

This study provides a proper tail calling model from most functional programming

languages without previous short comings by using the exception handling mechanism

of Javascript to achieve the tail calling behavior with first-class continuations, while

refraining from modification of the interpreter. For practical support, we embedded our

model into Moby Compiler, which is designed as a compiler from Advanced Student

Language of PLT-Racket with the world library to Javascript for both web browsers

and mobile platforms.

v

ÖZET

JAVASCRIPT DİLİNDE BİRİNCİ-SINIF UZANTILARDAN

DÜZGÜN SON ÇAG̃RILAR

Düzgün son çag̃rıların gerçeklenmesi, hedef makinanın uygulama çalışma za-

manındaki yıg̃ının programlarca erişimine ve yenilenmesine dair hiçbir yardımının ol-

madıg̃ı hallerde büyük zorluklar içerir. Yıllar içerisinde sunulan çözümler, yalnızca

son çag̃rı tekrarlamalarının optimizasyonunu yapmak gibi sınırlı karakteristiklere sahip

olduklarından, problem ancak sınırlı alanlarda çözümlenebilmiştir. Bunun sonucu

olarak programcılar verileri işlemede sıklıkla sadece emir yapılarını kullanarak, verilere

göre dog̃al olmayan programlar üretmek zorunda kalmışlardır. Bu da uzun vadede

geniş yazılımların idare edilmesi ve geliştirilmesini hayli zor kılmıştır.

Bu çalışma ile, dilin işleyicisinin deg̃işiklig̃inden kaçınarak, Javascript dilinin ex-

ception handling mekanizması ve birinci-sınıf uzantılar kullanılarak büyük bir yetersiz-

lik olmadan son çag̃rı davranışını elde etmek için bir düzgün son çag̃rı modeli sunuyoruz.

Bunu desteklemek için bu modelimizi PLT-Racket dilinin bir alt kümesi olan Advanced

Student Dili (ASL) ve world kütüphanesindan, ag̃ tarayıcıları ve taşınabilir platformlar

için Javascript kodu üretmek üzere tasarlanmış olan Moby Derleyicisine oturttuk.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . ix

LIST OF TABLES . x

LIST OF SYMBOLS/ABBREVIATIONS . xi

1. INTRODUCTION . 1

1.0.1. The Structure of this Thesis . 4

2. PHILOSOPHY OF HTDP . 6

2.1. Recursive Data . 8

2.1.1. Natural Numbers . 8

2.1.2. Structural Recursion : Factorial 9

2.1.3. List Processing: Map . 10

2.2. Natural Approach To Data: To Recurse or Not To Recurse 11

3. PROPER TAIL CALLING . 13

3.1. Tail Calls . 13

3.2. Tail Recursion . 14

3.3. Calling Tail-Position Functions Properly 15

4. COMPILERS . 19

4.1. Compilation: Stair Is the Stairs . 19

4.2. Functional To Imperative Compilers 20

4.2.1. Difficulties . 20

4.2.1.1. Upwards Funarg Problem 21

4.2.1.2. Downwards Funarg Problem 22

4.2.1.3. Lexical Closures . 22

5. CONTINUATIONS . 24

5.1. Continuations As First-Class Procedures 26

5.2. CPS – Continuation-Passing Style . 29

5.3. A Pearl of Scheme: call/cc . 30

vii

5.3.1. Get Out! . 30

5.3.2. Get Back In! . 32

5.3.3. A call/cc puzzle . 33

5.4. Continuations and The Web . 34

6. MOBY COMPILER . 35

6.1. Pedagogical Idea . 35

6.1.1. Bootstrap Curriculum . 36

7. PROGRAM TRANSFORMATION . 37

7.1. ANF Transformation . 37

7.2. Fragmentation . 38

7.3. Closure Conversion . 39

7.4. Annotation . 40

8. SUPPORT INFRASTRUCTURE . 42

8.1. Modelling Continuations: An Exceptional Help 42

8.1.1. Building The Continuation . 44

8.1.2. Invoking Continuations . 45

8.2. Issues About Implementation . 47

8.2.1. Live Variable Analysis . 47

8.2.2. Continuation.apply . 48

9. RESULTS . 51

9.1. Time Consumptions . 51

9.2. Advantages and Drawbacks . 52

10. CONCLUSIONS . 54

10.1. Future Work . 55

APPENDIX A: TRANSFORMED CALL/CC EXAMPLES 56

A.1. try-to-escape.js . 56

A.2. try-to-get-in.js . 58

A.3. generateOneElement.js . 61

APPENDIX B: COMPLETE SUPPORT CODE 70

B.1. ContinuationFrame . 70

B.2. FrameList . 71

B.3. SaveContinuationException . 72

viii

B.4. Continuation . 73

B.5. CWCC frame0 . 76

B.6. ContinuationApplication frame0 . 77

B.7. WithinInitialContinuationException . 77

APPENDIX C: COMPLETE TRANSFORMATION CODE 78

C.1. anormalize.ss . 78

C.2. fragmenter.ss . 86

C.3. eliminate-anonymous.ss . 95

C.4. box-local-defs.ss . 102

C.5. munge-identifiers.ss . 106

C.6. helpers.ss . 110

Bibliography . 114

ix

LIST OF FIGURES

Figure 2.1. Two Different Modeling of a Circular Object 8

Figure 2.2. General Layout of a Run-time Stack 11

Figure 3.1. Tail Calls of Two Same Programs in Different Languages 14

Figure 3.2. Fibonacci Program in ’a’ Normal Recursive and ’b’ Tail Recursive

Forms . 15

Figure 3.3. Run-time Behavior of Properly Recursive Factorial Program . . . 17

Figure 3.4. Tail Recursive Factorial Program 17

Figure 3.5. Run-time Behavior of a Tail Recursive Factorial Program 17

x

LIST OF TABLES

Table 5.1. Iteration table of continuation-based computation of an expression 27

Table 5.2. Iteration table for a properly recursive factorial evaluation 28

Table 5.3. Iteration table for a tail-recursive factorial evaluation 28

Table 9.1. Run-time Comparison of Cheney on M.T.A. and The Continuation-

based Technique For Factorial program 52

xi

LIST OF SYMBOLS/ABBREVIATIONS

κi The ith continuation

λ Binding literal from Scheme language: lambda

! The Factorial function

HTDP How To Design Programs

CPS Continuation Passing Style

call/cc call-with-current-continuation

ASL Advanced Student Language of PLT-Racket

IDE Integrated Development Environment

GC Garbage Collection

ANF Administrative Normal Form

1

1. INTRODUCTION

Program structuring and reusable modularity gains importance as software be-

comes more complex. A well-structured program is typically straightforward to write

and debug, in addition to being an elegant reusable abstraction, as it provides a set

of reutilization modules. In that sense, many programmers agree that conventional

programming languages bring conceptual limits to the modularization of programs,

while functional languages push those limits back. As being a mathematical oriented

paradigm, functional programming principally provides exactly the same equational

reasoning with algebra, which is a compulsory aspect of mathematics for most stu-

dents in high-school. Due to its less (even completely not) “side-effected” perspective,

functional programming tends to increase referential transparency relation as much as

possible, which enables a much greater use of equational reasoning, therefore it results

in more understanding, is easier to write and maintain complex softwares (Hughes

1989) (Krishnamurthi 2007).

Among other important features of functional programming languages, such as

higher-order functions and lazy evaluation, one of the most eligible and powerful notions

of functional languages is proper tail calls. As Chapter 3 explains, proper tail calling is

a notion of the semantics of space usage of a particular programming language. In other

words, tail calls in a program written in a programming language with proper tail calls

do not place any burden on the run-time stack. Thus, for example, iterations achieved

by recursion via tail calls (i.e. tail recursion) runs on a constant run-time stack space,

as does conventional looping constructs such as ’for’ and ’while’. Examples can be

extended to many different perspectives such as mutual recursion, Continuation Passing

Style (CPS), etc. As an insightful effect, proper tail calls equip programmers with the

capability of matching the organization of functions to that of the data (Krishnamurthi

2007) (Felleisen, Findler, and Flatt 2009).

Since the idea of tail calls was first introduced by Steele and Sussman in the mid

1970s, implementation of the Scheme interpreter for lambda calculus, several currently

2

well-known techniques were developed in an attempt to implement proper tail calling

for conventional programming languages such as C, Java or Javascript (Sussman and

Steele 1975).

In 1990, Tarditi et al. tried to compile Standard ML to C without compromising

on proper tail calls. Instead of a direct compilation, a continuation-passing style λ-

calculus intermediate language has been used to generate C codes. Since the runtime

stacks of CPS formed programs are explicit, tail calls can be easily captured from a

CPS formed program, and turned into jump instructions using setjmp and longjmp

functions. The problematic side of this technique however, is that the execution speed

of generated code is slower than the original code about a factor of two. Besides, not

all languages have the unconditional jump functions of setjmp or longjmp. Most

importantly, this study proposes a well-known technique called trampolines. While

trampolines ensure the constant stack space consumption automatically, the general

problem of them is that they are expensive, in the sense that they can cause a two-

three orders-of-magnitude slowdown. Additionally, it is not limited only to code that

contains tail calls, trampolines impact all codes (Tarditi, Lee, and Acharya 1990).

An improved version of trampolining technique was used in 2001, by Schinz and

Odersky, to eliminate tail calls on Java Virtual Machine. In addition to the generic

trampoline technique, this technique used a numeric value to keep track of tail calls

that had been made. A trampoline is used only after a certain number of tail calls

have been made. However, this improved version of trampolining technique is not

effective. Firstly, this technique achieves constant space consumption by ceasing both

code size and execution time. Secondly, choosing the right TCL intuitively, or with

trial and error for each system are not acceptable solutions for practical use. Thirdly,

Schinz and Odersky use visitors to simulate the algebraic data types. A possible heavy

usage of visitors would obviously pressurize the stack. To summarize, this technique

apparently requires a lot of optimizations (e.g. inlining for visitors) to be useful in

practice (Gamma, Helm, Johnson, and Vlissides 1994) (Schinz and Odersky 2001).

3

In 1994, Baker developed another famous technique called ”Cheney on M.T.A.“,

which has been used to compile Scheme to C language. Baker’s technique requires

programs to be converted into CPS form. By this way, internal anonymous functions

can be transformed into individual functions. The problem is however, since none of the

functions actually return in CPS form, the stack eventually becomes full. Baker turned

all stack allocations to use C’s stack allocation mechanism. Consequently, passing a

latest continuation closure to a copying garbage collector effectively makes the stack

the youngest generation of a generational garbage collector. The main problem of this

technique is that it requires an entire program transformation. The entire program

(including the required modules) has to be transformed into CPS form even if it does

not contain any tail call (Baker 1994).

Another confrontation of the problem of implementing proper tail calls on con-

ventional programming languages was engaged in 2006, by Loitsch and Serrano. In

this study, a compiler from Scheme to Javascript had been developed. Surprisingly,

the resulting compiler had no support for tail calls, instead, it only transformed very

simple and common recursive tail calls to the looping constructs of the target language,

such as ’for’ and ’while’. The reason for leaving proper tail calls unimplemented, is

that the performance penalties which well-known techniques generate are completely

unacceptable (Loitsch and Serrano 2006).

In the meantime, the functional programming community made an advance for

HTTP (i.e. statelessness), which could lead to a continuation-based understanding of

web applications. When a traditional server receives a request from a client, it prepares

a response, dispatches and closes the communication; this means the program has to be

terminated. This further implies that any subsequent computation has to be continued

by another program. Functional programmers claim that this is a continuation. Thus,

given the existence of first-class continuations, any continuous web application could

be executed on HTTP or any other stateless protocol, by capturing and storing a

continuation on the server and then applying it to subsequent requests from its client

(McCarthy 2009) (Pettyjohn, Clements, Marshall, Krishnamurthi, and Felleisen 2005).

4

This brings me to my thesis:

First-class continuation models in imperative programming languages allow
for proper tail calling behavior without any support from an underlying machine.

In support of this thesis, I specify a program transformation based on one from

Pettjohn et al. which presents a model for first-class continuations through stack

inspection mechanisms. The idea is to translate Scheme programs with call/cc into

a language with a generalized stack inspection mechanism. In one of the practical

applications, they show how exception handlers and exception throws can collaborate to

simulate continuation marks, which is MzScheme’s novel abstraction of all mechanisms

for manipulating the stack in some form or another (Pettyjohn, Clements, Marshall,

Krishnamurthi, and Felleisen 2005) (Flatt 2005).

In addition, neither Pettyjohn et al. nor McCarthy describe how to apply a

continuation, even though they provide a novel solution on how to model them. The

transformation described in this thesis overcomes this problem by annotating the con-

tinuation semantics with additional capabilities, such as replacing a continuation with

a previously captured one.

1.0.1. The Structure of this Thesis

In this thesis, a program transformation is described, which will achieve proper

tail calling behavior. Chapter 2 explains what it is like to be a programmer from

the HTDP perspective, and then describes from a mathematical point of view, how

functional programs are similar to the mathematical structure of data along with ex-

ample data and function definitions as well as their imperative counterparts. Chapter

3 describes the notion of tail calls, tail recursion and proper tail calling with examples

in detail. In chapter 4, the function of compilers and the rationale behind them are

explained, followed by a discussion of the main problems of compiling functional lan-

guages into imperative languages. This includes both first-class functions and lexical

closures, as well as scoping and the free variable capture problem. Chapter 5 explains

5

the continuations, their usage on web and the continuation-passing style, as well as a

call/cc example describing the transfer of control both in and out of a computation

in detail. In the subsequent four chapters, solution, implementation and theory and

practice are discussed:

• Chapter 6 explains the inner structure, the idea and the main characteristics of

Moby Compiler comparative to previous and ongoing works.

• Chapter 7 presents the program transformation in order to achieve the desired

behavior.

• Chapter 8 describes the principles behind support infrastructure on which the

transformed program works, along with some implementation problems and their

solutions.

This study, along with quantitative measurements of the time and space con-

sumption of generated code, as well as the advantages and drawbacks compared to the

other methods presented in chapter 9. A conclusion is made in chapter 10.

6

2. PHILOSOPHY OF HTDP

To some, programmers are very much like artists, and thus programming itself

may be considered an act of art. A composer starts with an idea, a feeling. Then he

carefully investigates and structures his idea, tries to understand it in a very fundamen-

tal level. When the composer fully conceives his feelings, he starts to express himself

employing the basic tools and techniques he possesses, such as a musical instrument.

In the end, small portions of melodies constitute a large and detailed symphony, which

may perfectly express the mental image of the musician.

Just like an artist, a programmer tries to investigate, understand and structure

his/her own idea, then express his mental image with a computer program, which is

very much like a symphony, consisting of small programs running in harmony with

each other. Therefore, computer programs are like carefully designed and structured

compositions, as well as the act of programming is an art of designing, composing and

organizing computational solutions.

In order to program a computer, a programmer needs to interact with it. Since

computers cannot understand complex expressions in English or in any other natu-

ral language, programmers use programming languages to interact with a computer.

Learning programming languages means understanding how computers represent, ex-

press and manipulate data. This leads to the main idea of programming, as well as the

philosophy of HTDP (Felleisen, Findler, Flatt, and Krishnamurthi 2001):

Programs follow data

According to HTDP there are two concepts in the essence of programming at the

lowest level:

• relating one quantity to another quantity, and

• evaluating a relationship by substituting values for names.

7

Provided this philosophy, HTDP proposes the idea that programming is basically an-

other form of algebra, which we already know from high school. In order to program a

computer, a programmer only needs to understand its language, its way of describing

and operating data. Once the understanding of a computer has been achieved, there

is only one step left for a programmer to program: modeling, the act of denoting real

objects to a computer. After carefully representing data, a programmer follows the

design recipe, also proposed by HTDP, to build the program.

The idea of conceiving a machine’s way of expressing itself and modeling data

to create a computer program leads to an essential understanding that a computer

program is basically a set of instructions for a computer to manipulate data. Therefore

a programmer needs to understand the nature of data, which he/she uses in his/her

model, in order to build a computer program that manipulates data. Creating a com-

puter program without understanding the natural structure of data is like trying to

paint without knowing which type of paint to use to express your mental image, an

unnatural approach which will create an absurdity at all levels.

“In order to use a computer properly, we need to understand the structural re-

lationships present within data, as well as the basic techniques for representing and

manipulating such structure within a computer.” Donald E. Knuth (Knuth 1997)

Computers operate on binary arithmetic. Since it is extremely inefficient to write

the set of instructions (i.e. programs) in binary, there should be an abstraction. All

of the data types we use in computing (numbers, strings, programs etc.) have some

form of abstraction for the binary system and all of them can be considered as data at

appropriate abstraction levels, which depend on the programmer’s imagination. (Mano

and Kime 2001) The example in Figure 2.1 points out that there can be different

abstractions of similar objects. In one case, a programmer represents a circle with a

number in his/her model, while in the other case, programmer models the circle with

a collection of informations related to a circular object; radius and speed.

8

Figure 2.1. Two Different Modeling of a Circular Object

The above example in Figure 2.1 basically demonstrates the essence of data rep-

resentation, however we should employ a more detailed approach in order to achieve a

deeper understanding about the nature of data, by investigating how to define them.

2.1. Recursive Data

There is a particular kind of data, namely recursive data, which is a data type

that may contain other values of the same type. This section provides some examples

of recursively defined data to reach a better understanding of the “programs follow

data” principle (Aczel 1977).

2.1.1. Natural Numbers

The general definition of natural numbers is:

ai = ai−1 + 1 where a1 = 0 (Bancerek 2003)

The essential structure of the definition of natural numbers demonstrates that we

need to know only the initial value and the successor function in order to model them

with our computational tools, such as the Haskell data type:� �
data Nat = Zero | Succ Nat
� �

Which indicates a natural number is either:

9

1. zero, or

2. a successor of another natural number.

Using this definition, one can easily construct a conditional recursive program in

Scheme which has the purpose of finding the value of a particular natural number,

as follows:� �
(d e f i n e (nthNatural n)

(i f

(= n 1) 0

(+ 1 (nthNatural (− n 1)))))
� �
2.1.2. Structural Recursion : Factorial

Let us show another kind of recursively defined data. The formal definition of a

factorial of a positive integer is:

n! =

 1 if n = 0,

(n− 1)! ∗ n if n > 0,

By knowing the mathematical principle of factorials, one can easily build a recursive

Scheme program to find a factorial of a particular natural number:� �
(d e f i n e (f a c t o r i a l n)

(cond

((= n 0) 1)

(e l s e (∗ n (f a c t o r i a l (− n 1))))))
� �
Observing the similarity between the algebraic mathematical definition and a recur-

sively defined computer program, it is obvious that this kind of approach is definitely

natural and clear in the sense of both writing and reading a computer program.

10

2.1.3. List Processing: Map

Our final example is a classical form of a recursive data type, a list. The definition

of a list is:� �
data L i s t a = Ni l | Cons a (L i s t a)
� �

Which says a list of a is either:

1. null, or

2. a pair of an a’s and a list of a’s

Again, from the definition, one can easily construct a recursive computer program

which can manipulate a list given to it:� �
; ; map : (a −> b) l i s t−of−a −> l i s t−o f−b

(d e f i n e (map aFunction aL i s t)

(i f

(null ? aL i s t) null

(cons (aFunction (f i r s t aL i s t))

(map aFunction (rest aL i s t))))))
� �
The examples in this section demonstrate the effectiveness of building computer

programs considering the nature of data, which the program will express and manip-

ulate. Constructing recursive programs to process naturally recursive data is easy,

understandable and clear, as well as intuitive and normal.

However, there is an obvious problem about recursion, considering the space

growth of the run-time stack. Although run-time stacks are multi-purpose stack data

structures, they are generally used to keep track of memory locations for each active

subroutine to transfer control to an appropriate function after finishing their execution.

For any executed function, a stack frame (or an activation record) will be created to

store data (such as its actual parameters, local variables, return address, etc.) for it

11

Figure 2.2. General Layout of a Run-time Stack

to use while and after execution. Since a recursive computation based on successive

function calls, any recursively defined program goes into danger of overflowing the

run-time stack. (Aho, Sethi, and Ullman 1986)

2.2. Natural Approach To Data: To Recurse or Not To Recurse

While recursion is a natural approach for processing inductively defined data

types, programmers often choose to use classical iteration to preserve the program

from the inefficiency in terms of space consumption which the recursion would naturally

produce.� �
f unc t i on f a c t (n) {

var retValue = 1 ;

f o r (i=1 ; i<=n ; i++) {

retValue ∗= i ;

}

return retValue ;

}
� �

12

The program above is an iterative factorial function written in Javascript language. In

contrast to a recursively defined factorial function, iterative approach does not follow

the mathematical definition of factorials. Building a program in this way requires

extra effort for re-organizing the solution to use the looping constructs (such as ’for’

and ’while’). As this re-organization is easy for a factorial function, it can be extremely

difficult to use in some different cases (e.g. mutual recursion). In addition, by using an

iterative approach on recursively defined data, a program loses its position as a natural,

clear and intuitive program. Thus it becomes an unclear, hard to read or understand

function (Felleisen, Findler, and Flatt 2009).

The iteratively defined program above runs in a constant stack space1 , although

it does not make any additional subroutine calls, and accumulates the knowledge in a

local variable (retValue) while running. Therefore the iterative approach becomes the

perfect choice for practical purposes (such as web or database programming).

This problem of the unnatural being chosen for efficiency has been solved by a

marvelous idea, namely Proper Tail Calls, which utilizes the natural aspects of recursion

with the run-time efficiency of iteration in terms of space consumption. In the next

chapter, we shall continue with examining the notion of “calling a tail position function

properly” in detail.

1Stack space is not proportional to input.

13

3. PROPER TAIL CALLING

Previous chapters investigated the advantages of recursive programs working on

naturally recursive data. This chapter explains an essentially mathematical notion, an

evaluation strategy, namely, Proper Tail Calls, which has been fundamentally forged

from the reasoning of space consumption of a program evaluation. The main focus

of proper tail calls is providing necessary infrastructure where programmers easily

match data and organization of functions. Additionally, proper tail calls, by its nature,

exhibits the constant stack space behavior, which exalts programs to even beyond being

natural, to also being efficient.

3.1. Tail Calls

In order to understand Proper Tail Calls, it would be convenient to first introduce

the notion of tail calls. The idea of tail calls was introduced by Steele and Sussman

in the mid 1970s, via implementation of the Scheme interpreter for lambda calculus.

Among other improvements brought to the field, in our scope, includes the most im-

pressive focus of this study has been a huge development in the path to understand

the true nature of function calls (Sussman and Steele 1975).

Shortly, a tail call is the last procedure call of an enclosing procedure. There is

no computational work done between the termination of a tail call and a termination

of a procedure that calls it. Thus, the resulting return value will be identical to the

return value of its caller. This overview illustrates that a tail call itself is not a language

property, but rather a notion that all useful2 programming languages already have.

As section 2.2 mentions, without proper tail calls, programmers are forced to

organize iterations over data to use only classical looping constructs such as ’for’ and

’while’. However, in functional programming languages, programmers are not restricted

2By saying useful, we mean the programming languages in which one can build any kind of proce-
dural abstraction.

14

Figure 3.1. Tail Calls of Two Same Programs in Different Languages

in this way. The same computation can be achieved by recursive procedures. The phi-

losophy, “programs follow data”, provides simplicity and elegance to the manipulation

of data which already has the same semantic structure with implementation. This is

achieved by proper tail calls. More precisely, taking tail calls into account provides

the necessary framework, on which programmers can approach data pure3 function-

ally. Therefore, proper tail calls give the natural power to catch reasoning of data

(even non-linear ones) directly over the organization of functions (Felleisen, Findler,

and Flatt 2009).

3.2. Tail Recursion

The most common usage of proper tail calls is obviously in tail recursive programs.

For a procedure, to recurse means to make a procedure call to itself. In other

words, all recursive programs make at least one procedure call to itself. Tail recursion

is used to make these recursive calls via a tail calls.

Two programs in figure 3.2 illustrate the difference between normal recursion and

tail recursion. The one in ’a’ is properly recursive, while the one in ’b’ is tail-recursive.

The recursive calls in ’a’ are not tail calls, because the ’+’ (addition) operation waits

for results of an addition. In other words, there is more computation left between the

termination of the fibonacci program and recursive calls. The one which is a tail call is

actually addition, the one which decides the result of the main fibonnaci call. On the

3Without side effects.

15

Figure 3.2. Fibonacci Program in ’a’ Normal Recursive and ’b’ Tail Recursive Forms

other hand, the program ’b’ illustrates how a programmer might use proper tail calls

for his/her own benefit. Obviously the tail call in ’b’ (fibo function) is:� �
(f i b o n (+ f s) f (add1 i))
� �

At first glance, this call seems to help by eliminating the need for an additional

stack frame for the addition operation, but the actual effect is even greater. The tail

recursive Fibonacci is computationally equivalent4 to a possible Fibonacci program

written in Java using conventional looping constructs such as ’for’ or ’while’. The

actual power comes from the Proper Tail Calls, which will be studied detailedly in the

next section.

3.3. Calling Tail-Position Functions Properly

The fact that there is no computational work done between the termination of a

tail call and the termination of a procedure that calls it (as explained in section 3.1)

indicates the redundancy to build two different stack frames for both the tail call and

its enclosing procedure. Since both will have the same result, the only job the upper

stack frame (which belongs to the enclosing procedure) has to do is pass the result

coming from the lower frame to an upper frame belonging to whichever function starts

this particular computation. This constitutes the main idea of Proper Tail Calls, which

is basically to overwrite the stack frame of the caller function with the stack frame of

4In terms of space consumption.

16

the tail call.

Consider a small portion of a properly recursive Factorial program evaluation:� �
...

A

(f a c t o r i a l 5)

(∗ 5 (f a c t o r i a l 4))

(f a c t o r i a l 4)
...
� �

Somewhere in the program flow, a procedure A makes the call (factorial 5) and started

to wait for return value. Then (factorial 5) call (* 5 (factorial 4)) and so on. When

one of these continuing calls ever returns a value, the program will roll upwards and

return results (as well as the control) one-by-one to each other. Here we may observe

that the (factorial 5) only passes the return value of (* 5 (factorial 4)) to A. It is

basically an identity function.

Making tail calling proper, eliminates redundancy by overwriting the stack frame

of the callee by the tail call. Therefore the evaluation of a properly recursive factorial

program seems like the following, in an environment in which the tail calls are proper

tail calls.� �
...

(∗ 5 (f a c t o r i a l 4))

(∗ 4 (f a c t o r i a l 3))

(∗ 3 (f a c t o r i a l 2))
...
� �

In addition to its naturalness on (even non-linear) data, tail recursion also be-

comes the most efficient way of looping technique with the existence of the stack frame

elimination mechanism. The idea is that saving the control context regarding an argu-

ment evaluation, rather than function calls (Felleisen, Findler, and Flatt 2009).

17

While evaluating a properly recursive function, control context is saved in run-

time stack frames during the evaluation of the sub-expressions. That is to say, if we

run (factorial 3) on the Scheme code in Figure 3.15 , the run-time evaluation of it

will be:

Figure 3.3. Run-time Behavior of Properly Recursive Factorial Program

Figure 3.4. Tail Recursive Factorial Program

In contrast, the tail recursive factorial function in Figure 3.3 saves its control con-

text on argument evaluation (i.e. the result is accumulated in the parameter ’result’).

Therefore, the run-time evaluation will be:

Figure 3.5. Run-time Behavior of a Tail Recursive Factorial Program

This illustrates that proper tail calls provide a constant stack space behavior, by

saving the control context on argument evaluation, as in classical looping constructs,

such as ’for’ and ’while’. Using tail recursion instead of imperative looping provides an

elegant and natural approach to recursive data, without sacrificing efficiency.

Section 3.1 explains that the notion that proper tail calls is not a language-specific

property per se, but rather a semantical concept that all programming languages have.

However, as it is mostly said to be (tail call optimization), proper tail calls are not an

optimization, but an aspect of the semantics of the space usage of the language. Aside

5In an environment which has proper tail calls.

18

from this fact, proper tail calling can be achieved by optimizing the compiler to make

language space-safe in the sense of tail calls. Some languages have this optimization

(i.e. Scheme), therefore, proper tail calls, while others decide to compromise from this

artifact (i.e. Java), forcing the programs to be unnatural and hard to read, which leads

to a lot of problems regarding maintenance, testing and further development of the

software in the long term.

19

4. COMPILERS

This chapter examines compilers and discusses difficulties and advantages of func-

tional compilers which target imperative programming languages.

4.1. Compilation: Stair Is the Stairs

Considering theoretical computing, there is a method for proving problems are

computationally unsolvable, namely reducibility. Reduction is a model of transforming

a problem into another, such that the second problem can be used to solve the first

one. A particular kind of reduction, namely mapping reduction, is a transformation

such that the solution of the second problem is the solution of the first. Computer

operation strongly relies on the mapping reducibility principle (Sipser 2006).

Chapter 2 explains that a computer program is basically a set of instructions for

a computer to execute. In order for a computer to perform the operations expressed

by a set of instructions, there are a lot of middle stages for applying the necessary ar-

rangements on the program, such as lexical or semantic analysis and intermediate code

generation. In other words, a program has to be translated from a high-level program-

ming language into a low-level one, such that a computer can execute it. Translation

is carried out by a couple middle stage programs, such as preprocessor, parser etc.

This leads to an interesting idea that all programs are input data for other programs,

except the lowest-level programs consisting of actual instructions represented as a mem-

ory word 6 . Even very low level assembly programs require an assembler to interpret

program codes (Aho, Sethi, and Ullman 1986).

In order to prove that there is a mapping reducibility between two languages (or

problems/questions), one has to show that a mapping function exists, which can map

a solution of one language into the solution of another 7 . Thereby; compilers act as

6Chris Stephenson, March 2010
7Such a construction is obvious due to the Turing-decidability of computers.

20

a mapping function between a source and target language. Therefore; a theoretical or

practical machine which can execute the programs (solve the problems) generated in a

target language becomes capable of executing programs (solving problems) generated

in source language as well.

4.2. Functional To Imperative Compilers

There are several kinds of compilers designed for functional programming lan-

guages which target imperative programming languages. Usually, these compilers are

used to compile a program generated for a functional programming language to be

executed by a computer. Since computers operate on a set of instructions executed

in a sequential manner, the lowest-level step must be a program in an imperative

programming language, no matter which type the intermediate languages are.

Another area of the functional-to-imperative compilers’ usage is to run the pro-

grams written in one of the functional programming languages on a non-supportive

environment, such as browsers (i.e. Mozilla Firefox).

4.2.1. Difficulties

Designers of compilers for functional programming languages which target im-

perative programming languages are often confronted with problems about modeling

novel features of functional programming languages on an imperative target language.

In that sense, the most common problematic features of functional programming lan-

guages are proper tail calling and first-class continuations, which will be elaborated on

in chapter 5.

A classical difficulty arises when compiling/implementing functions as first-class

values in imperative programming languages. Being a first-class value means that a

particular kind of value (i.e. numbers) which can be supplied for a function as an actual

parameter, returned by functions or stored in a data structure. Therefore, implement-

ing functions as first-class values requires assigning all privileges of ordinarily first-class

21

values (such as numbers, strings, etc.) to functions. This can be very problematic for

programming languages which maintain their lexical and local variable environments

in a run-time stack, concisely in stack-based programming languages, such as C++.

The problematic side of implementing first-class functions in stack-based programming

languages can easily be described by the “Funarg Problem” (abbreviated for func-

tional argument), which has an exact correspondence with the free variable capture

problem in lambda calculus. In lambda calculus, the variable capture problem arises

when plain substitution is performed rather than proper beta-reduction with renaming

(Krishnamurthi 2007) (Moses 1970) (Barendregt 1985).

The funarg problem occurs when the body of a function makes a direct refer-

ence (e.g. not passing arguments) to identifiers not defined in the environment of the

function call. There are two kinds of funarg problem: upwards funarg problem and

downwards funarg problem.

4.2.1.1. Upwards Funarg Problem. The upwards funarg problem occurs when the call-

ing function refers to a function’s state after that function has returned. Consider a

Scheme definition of a functional composition:� �
(d e f i n e (compose f g)

(lambda (x) (f (g x))))
� �
The ’compose’ function produces a one argument function, which returns the result

of applying f to the result of applying g to its argument x. If the ’compose’ function

stores the parameter variables ’f’ and ’g’ on the stack, when it returns the one argument

function, the stack frame designated for ’compose’ would be deallocated, therefore the

values for ’f’ and ’g’ become irrecoverably lost. Which means if we run8 :� �
(d e f i n e my−composed−func (compose sqrt sqr))

(my−composed−func 5)
� �
8... in a stack-based language

22

the ’my-composed-func’ program would produce an undefined reference error, because

the stack frame containing the real values of ’f’ and ’g’ had been lost when the function

’compose’ was returned.

4.2.1.2. Downwards Funarg Problem. The Downwards Funarg Problem takes place

when a function is executed outside the scope in which it has been defined. Consider

the code snippet9 :� �
f unc t i on () {

var temp = 1 ;

var func = func t i on () { return temp++; } ;

al ienFunc (func) ;

}
� �
The function ’func’ has been passed downwards to the ’alienFunc’ function from its

declaration scope. After this function returns, the stack frame containing the local

variables ’temp’ and ’func’ will be deallocated from the stack. However, another acti-

vation record will be generated for the ’alienFunc’ function. Because the stack frame

of ’alienFunc’ contains only a reference to ’func’ (i.e. not also to ’temp’), any execution

of ’func’ will produce an error indicating that the variable ’temp’ is undefined.

One can resolve the funarg problem via either forbidding such references or cre-

ating closures (Sandewall 1971).

“Programming languages should be designed not by piling feature on top of
feature, but by removing the weaknesses and restrictions that make additional
features appear necessary” Revised6 Report on the Algorithmic Language Scheme
(Sperber, Dybvig, Flatt, van Straaten, Findler, and Matthews).

4.2.1.3. Lexical Closures. As P.J. Landin defined and used in his SECD machine for

evaluating expressions, a closure has:

9’foo’ is a one-argument function declared somewhere.

23

1. an environment part which is a list whose two items are:

(a) an environment

(b) an identifier or list of identifiers,

2. a control part which consists of a list whose sole item is an expression (Landin

1964).

Joel Moses improved Landin’s idea by providing that closures are lambda expres-

sions whose free variables have been bound in the lexical environment, resulting in a

closed expression; which were then adopted by Steele and Sussman in the implemen-

tation of Scheme language (Moses 1970) (Sussman and Steele 1975).

Therefore, in a lexically (statically) scoped environment:� �
(my−composed−func 5)
� �

This will produce 5 as a result, because it has been defined as a closure, which means

that when ’my-composed-func’ is applied to 5, even the definitions of ’f’ and ’g’ are

deallocated from the run-time stack, their declarations exist in the environment on

which the generated closure has been closed.

24

5. CONTINUATIONS

In the early history of programming languages, the ability of Algol 60 to jump

out of blocks and even procedure bodies, led to the realization that the representation

of a label must include a reference to an environment (Backus, Bauer, Green, Katz,

McCarthy, Perlis, Rutishauser, Samelson, Vauquois, Wegstein, van Wijngaarden, and

Woodger 1963) (Aho, Sethi, and Ullman 1986).

“... in order to specify a transfer of control we must in general supply both
the static description of the destination ... and a dynamic description of its
environment, the stack reference. This set ... together define what we call a
program point10 ” Peter Naur (Naur 1963).

A more sophisticated understanding was that the return addresses of procedures

could be processed as procedure parameters. Thus, Edsger W. Dijkstra stated:

“We use the name “parameters” for all the information that is presented to
the subroutine when it is called in by the main program; function arguments, if
any, are therefore parameters. The data grouped under the term “link” are also
considered as parameters; the link comprises all the data necessary for the contin-
uation of the main program when the subroutine has been completed“ (Dijkstra
1960).

Another occurrence of continuations was in Peter Landin’s SECD machine, a

state-transition interpreter for a language of applicative expressions that was syn-

tactically similar to the untyped lambda calculus but used a call-by-value order of

evaluation. A state in the SECD machine is a four-tuple of following components:

• S : a stack for tracking values V̂ locally

• E : an environment, associating variables X with values V̂

• C : a control string for directing the execution

• D : a “dump” representing a saved state: 〈Ŝ, Ê, Ĉ, D̂〉
10In that time, program point was a representation of a continuation

25

In terms of practical implementation, the S part corresponds to local data for a partic-

ular procedure while D encodes the remaining computation by informally correspond-

ing the rest of the stack. Therefore, it was another representation of continuations

(Felleisen, Findler, and Flatt 2009) (Reynolds 1993).

At present, beside the two kinds of denotational context, which are: naming

context (i.e. environment) and state context (i.e. store), there is a third general context

which is also important to the evaluation of programming language expressions, namely

control context. While environments lead to a better understanding about the naming

and scoping problems and stores help to investigate issues involving mutation, control

contexts provide the capability of observing, expressing and manipulating the normal

flow of a program’s execution (Krishnamurthi 2007) (Turbak and Gifford 2008).

Evaluation contexts can denote control contexts in an operational framework.

Consider the following expression:� �
(+ (∗ (f a c t o r i a l 5) 2) (f a c t o r i a l 5))
� �

Since both (factorial 5) calls are evaluated in the same environment and store the

only difference between them, it is how their results are used by the rest of the program

(i.e. their results will always be the same). Informally, control contexts basically

describe the rest of the computation that remains to be done after the expression has

been evaluated.

The control context of the first occurrence of (factorial 5) is:� �
(+ (∗ � 2) (f a c t o r i a l 5))
� �

while the control context of the second occurrence of (factorial 5):� �
(+ (∗ 120 2) �)
� �

26

Note that the control context also shows in which order the expressions are evaluated

(i.e. left-to-right in this case).

Denotational descriptions which do not have the notion of the rest of the com-

putation, in other words the denotational semantics without an explicit control model

(i.e. direct semantics) can not properly handle interruptions of the normal flow of a

computer program. Such deficiencies can easily be manifested by the constructs of

various languages that suspends a particular computation and transfers the control

to another computation, such as: return, break and continue statements of JAVA or

C; exception handling mechanisms of ML or COMMON LISP; backtracing of PRO-

LOG and goto statements of various programming languages supporting unrestricted

jumps. Mathematical entities which model such control transfers denotationally called

continuations. They are denotational projections of evaluation contexts of operational

semantics (Turbak and Gifford 2008).

5.1. Continuations As First-Class Procedures

In an operational framework, many sophisticated control behaviors can be achieved

with continuations using only first-class functions, that is, procedural representations

of continuations, namely functional continuations. A functional continuation of an ex-

pression E is basically a unary procedure that takes the result of E and performs the

rest of the computation. For example, consider the first occurrence of the (factorial 5)

expression in:� �
(+ (∗ (f a c t o r i a l 5) 2) (f a c t o r i a l 5))
� �

The continuation of the first (factorial 5) can be represented with a procedure as follows:� �
(λ (v1) (+ (∗ v1 2) (f a c t o r i a l 5)))
� �

as the continuation of the second (factorial 5) can be represented as:� �
(λ (v2) (+ 240 v2))
� �

27

Given that the continuations represented explicitly, every computation can be expressed

as a set of steps which are iterated by two state variables (Felleisen, Findler, and Flatt

2009) (Turbak and Gifford 2008).

• The expression currently being evaluated

• The continuation of the current expression

Therefore, we can represent the evaluation of:� �
(+ (∗ 4 3) (− 10 2))
� �

as shown in Table 5.1:

current expression continuation

(+ (* (- 10 2) 3) 5) κtop

(* (- 10 2) 3) κ1 = (λ (v1) (κtop (+ v1 5)))

(- 10 2) κ2 = (λ (v2) (κ1 (* v2 3)))

8 κ2

(* 8 3) κ1

24 κ1

(+ 24 5) κtop

29 κtop

Table 5.1. Iteration table of continuation-based computation of an expression

The expression is being evaluated with respect to κtop, the continuation of this

whole computation, in other words, the rest of whichever computation started this one.

In this case, we can assume that κtop is an identity procedure.

As a classical example, a summary of the iteration of factorial function from

Figure 3.1 is shown in Table 5.2.

28

current expression continuation

(factorial 3) κtop

(factorial 2) κ1 = (λ (v1) (κtop (* 3 v1)))

(factorial 1) κ2 = (λ (v2) (κ1 (* 2 v2)))

(* 2 1) κ1

(* 3 2) κtop

6 κtop

Table 5.2. Iteration table for a properly recursive factorial evaluation

This representation displays the stack-like nature of continuations. It can be

considered that calling a procedure creates a new continuation that corresponds to

the frame that is pushed onto the top of the call stack. On the other hand, invoking

a continuation corresponds to popping the top frame off the call stack and returning

control to code in the calling procedure, whose frame becomes the new top-of-stack

frame.

As a comparative example, a summary of the iteration of tail-recursive factorial

function, from Figure 3.4 is shown in Table 5.3.

current expression continuation

(factorial 3 1) κtop

(factorial 2 3) κtop

(factorial 1 6) κtop

6 κtop

Table 5.3. Iteration table for a tail-recursive factorial evaluation

Note that any implementation of the tail-recursive factorial computation need not

push a new invocation frame onto the function-call stack for the subsequent factorial

calls in tail context, since it does not involve any new continuations. Thus, the run-

time stack space can remain constant during an evaluation. In contrast, invocations of

the recursive factorial do involve new continuations, therefore any implementation will

push a new invocation frame onto the run-time stack, resulting the space required to

29

evaluate such a computation to be proportional to the growth of the input data.

5.2. CPS – Continuation-Passing Style

A program which takes its continuation explicitly as an extra parameter is said

to be in continuation-passing style (CPS) form. Instead of a normal return, a pro-

gram in CPS form invokes its continuation on its return value to resume the overall

computation. For example, here is the CPS formed properly factorial function11 :� �
(d e f i n e (fact−cps n k)

(i f

(<= n 1)

(k 1)

(fact−cps (sub1 n)

(λ (v) (k (∗ n v))))))
� �
With the existence of explicit continuations, in every step how the function will

resume the computation can be hardcoded into the procedure call. As this example

also clearly indicates, a CPS formed function is invoked with an extra parameter which

is a functional continuation, some form of a representation of how its results will be pro-

cessed after such results have been obtained by the function’s computation. Informally,

it says what to do next after the CPS formed function finishes its computation.� �
(fact−cps 4 (λ (v) v)) → 24

(fact−cps 4 (λ (v) (+ v v))) → 48
� �
While this can be seem to have no benefits in practice, explicit continuations

can be used to obtain very sophisticated control behaviors such as multiple-value-

returning, nonlocal exits, error handling and backtracing etc. Detailed discussion of

11Observe that the use of explicit continuations turned a properly recursive program into a tail-
recursive one, because any computation other than the recursive call has been automatically embedded
into the continuation passed to the subsequent iteration.

30

such applications are obviously beyond the scope of this thesis. Another advantage of

using explicit continuations is by turning all codes into CPS form, a compiler makes it

unnecessary to use an explicit procedure-call stack since all the frames are implicit in

the continuation (Krishnamurthi 2007) (Turbak and Gifford 2008).

5.3. A Pearl of Scheme: call/cc

Many programming languages adds operations such as label, setjmp or longjmp

to reify some features to manipulate the control of the underlying language. Scheme

has one: call/cc (call-with-current-continuation). Call/cc is a truly powerful reification

which makes all the other control manipulation operators syntactic sugar, because all

of them can be implemented using call/cc (Krishnamurthi 2007).

Call/cc is a unary function that takes a one argument function as its only param-

eter and gets the “snapshot” of the current control context as an object, then applies

that object to the one argument function it has been given as its only parameter12

(Friedman and Wand 1984) (Krishnamurthi 2007).

5.3.1. Get Out!

Early termination of a procedure and throwing an exception are both examples

of escaping from a computation. This requires a computation to transfer the control

to another computation, while abandoning the current context. Call/cc does the both.

Consider the following expression:� �
(+ 2

(c a l l / cc

(λ (k)

(∗ 5

(k 4)))))
� �
12An unobvious reification here is Scheme not distinguishing a function application from continua-

tion application by overloading the procedure application semantics.

31

As the call/cc captures the current continuation as a procedural object as follows:� �
k → (+ 2 �)
� �

it immediately applies it to 4, resulting in 6.

Another example involving a model for exceptions using call/cc from PLAI:� �
(d e f i n e (f n)

(+ 10

(∗ 5

(c a l l / cc

(λ (e s c)

(/ 1 (i f (ze ro ? n)

(e s c 1)

n)))))))
� �
In this example, any occurrences of “division by zero” is handled by the contin-

uation, such that, if the denominator is 0, captured continuation which is:� �
(λ (k)

(+ 10 (∗ 5 k)))
� �
applied immediately to 1, sneaked out from division by zero. Otherwise, the computa-

tion will be performed as if there is no call/cc at all, in other words, as if the body of

the function is:� �
(d e f i n e (f n)

(+ 10

(∗ 5

(/ 1 n))))
� �

32

Here, the continuation bound to esc can be considered as an exception handler,

while invoking it considered as throwing an exception.

5.3.2. Get Back In!

Since the continuations captured by call/cc are first-class values (i.e. functions),

one can easily store any captured continuation in a persistent data structure and jump

from anywhere in the program (transfer the control) to the computation in which the

continuation was originally captured.

Consider the following program:� �
(d e f i n e return f a l s e)

(+ 1 (c a l l / cc

(λ (k)

(set ! return k)

1)))
� �
This program will capture the continuation:� �

(λ (v)

(+ 1 v))
� �
and binds it to an identifier called return. After this program terminates (i.e. after

return has been modified), any invocation of return will get into the computation in

which the continuation was captured 13 . Thus:� �
> (return 22)

23
� �
13Invoking the continuation bound to return in the same context would result in an infinite loop

since the captured continuation would also include that invocation.

33

5.3.3. A call/cc puzzle

Here is an example of how call/cc could be used to suspend and continue a

particular computation. Consider the program:� �
; ; generate−one−element−at−a−time :

; ; (l i s t−of−a) −> a OR ’ fe l l−down

(d e f i n e (generate−one−element−at−a−time l s t)

(d e f i n e (cont ro l− s ta t e r e t)

(map

(lambda (element)

(set ! r e t (c a l l / cc (lambda (resume−here)

(set ! c ont ro l− s ta t e resume−here)

(r e t element)))))

l s t)

(r e t ’ fel l−down))

(lambda ()

(c a l l / cc cont ro l− s ta t e)))

(d e f i n e aDig i t

(generate−one−element−at−a−time ’ (1 2 3 4 5)))
� �
In this example, numbers from a list of numbers are returned one-by-one at every

invocation. The key idea is, every time the loop is about to process another item from

the list, two continuations are modified:

• While initially being the closure that iterates through all the elements of the

list, after the first invocation, the control-state becomes a continuation which is

captured at an intermediate step of map. This will be used to continue returning

numbers from whichever number was on the line when the continuation has been

captured.

34

• The continuation bound to ret is modified to return the element to whichever

computation that has been applied to control-state.

Therefore, successive invocations of aDigit will return the elements (along with

fell-down) one-by-one instead of a complete list.� �
> (aDig i t)

1

> (aDig i t)

2

> (aDig i t)

3
...

> (aDig i t)

fel l−down
...
� �

5.4. Continuations and The Web

Since the HTTP is a stateless protocol, a program terminates after processing a

request received from a client. Thus, any successive computation must be continued

by another program. This requires a request to carry enough information to resume a

computation at the point it was suspended. Since continuations represent the rest of

the computation, continuation-based programs allow continuous computations (such

as list processing) to run on traditional web servers, such as Apache (TheApacheTeam

) (McCarthy 2009).

35

6. MOBY COMPILER

This chapter discusses pedagogical ideas and technical background of Moby Com-

piler; a compiler that consumes Advanced Student Language (ASL) programs of PLT-

Racket language that use World primitives, and produces applications for mobile plat-

forms.

More precisely, Moby Compiler produces Javascript code from ASL programs,

implements ASL primitives by runtime libraries written in Javascript included with

the compiled application. For smartphones, Moby Compiler uses a bridge library,

namely, Phonegap, which is an open source development infrastructure for building

cross-platform mobile applications. Phonegap bridges HTML and Javascript with na-

tive facilities of Google Android, iPhone/iTouch/iPad, Palm, Blackberry and Symbian.

Therefore, supporting multiple platforms by using such a bridge makes Moby a powerful

abstraction regarding code reusability. Moby currently implements auxiliary features,

such as tilt, location, sms and music only for Android platforms.

6.1. Pedagogical Idea

Most of computer science curriculum employ an HTDP approach on freshman

programming courses, such as Istanbul Bilgi University Computer Science Department.

Freshman curriculum includes building animation applications using DrScheme with

World/Universe teachpack.

At the age of online interaction with computers and spread of smartphone plat-

forms, such as Android, freshman students of programming can share applications

with their friends, families or instructors using Moby. Compiling programs written

in Advanced Student Language of PLT-Racket to Javascript or J2ME (for Android)

using Moby provides an opportunity to embed applications on web-sites as well as on

smartphones without knowing platform specific details.

36

6.1.1. Bootstrap Curriculum

There is a particular pedagogic program, namely Bootstrap, which involves Moby

as a technical back end. In Bootstrap curriculum, middle-school students receives

the ’first-dose of algebra’ by creating images and animations through programming.

Students learn that the algebra is not only a mathematical aspect; they learn to perform

algebraic operations on a much richer set of data types, such as images (Schanzer and

PLT-RacketTeam).

WeScheme is an online programming environment running Moby language. In

other words, students are using WeScheme as an online (i.e. browser based) IDE to

produce their formerly offline and stand alone animations created in DrScheme (cur-

rently DrRacket). Moby is the compiler underneath WeScheme. In addition to Scheme

language, Moby provides additional features for using platform-dependent tools. For

example, an application in WeScheme could communicate with a Google web service

to receive a map into a program and process it to create a logistic application sup-

ported with additional location information from various GPS services (Yoo, Zhang,

Cecchetti, Hickey, Krishnamurthi, Derici, and Zimmt).

Aside from a pedagogical perspective, ultimate goal of Moby is to provide a new

programming environment for cell-phone application development. The ’world’ is a

starting point of a much greater objective which is to provide an easy development

of new softwares for Android and J2ME. This has an implication that the ’world’

teachpack should be extended toward cell-phone application development. Therefore,

performance, efficiency and resource consumption are essential issues to the further

development and expansion of Moby.

37

7. PROGRAM TRANSFORMATION

This chapter describes program code transformation for implementing proper tail

calling behavior by modeling first-class continuations in a language that do not support

run-time stack inspection and manipulation.

Presented transformation as well as support infrastructure are strongly based on

one from Pettyjohn et al. However, in order to obtain proper tail calling, one needs

to be able to actually apply the continuation, not only to capture. Our contribution

is to make a transformed program be able to apply a previously captured and stored

continuation. (Pettyjohn, Clements, Marshall, Krishnamurthi, and Felleisen 2005)

For most of the conventional programming languages, a function has no access

to its continuation, which generally indicates parts of the program other than its own.

However, a function does have access to its own dynamic state. Therefore, procedure

bodies could be modified to cooperatively build a continuation object by appending its

own part of a computation to an accumulated continuation model. This constitutes

the main idea of our transformation.

7.1. ANF Transformation

The first step is to transform a code into Administrative Normal Form (ANF),

which is a canonical form where all function calls appear either as a right-hand side of

an assignment or as an expression element of a return statement. In other words, each

argument of a function must be named in ANF as a nested ’let’ expressions having

simple function calls in body. (Flanagan, Sabry, Duba, and Felleisen 1993) (McCarthy

2009)

To build and store a continuation object, one needs to have an access to all

information about the control flow, which compound expressions abstract away within

a computation such as temporary variables. However, transforming the code into

38

ANF linearizes a control flow by replacing compound expressions with corresponding

primitive expression sequences and previously bounded identifiers.

Consider the fibonacci program written in Javascript:� �
f unc t i on f i b o n a c c i (n) {

i f (n<=1){

return n ;

}

return f i b o n a c c i (n−1) + f i b o n a c c i (n−2) ;

}
� �
The ANF-transformed version of the fibonacci program above:� �

f unc t i on f i b o n a c c i (n) {

i f (n<=1) {

return n ;

}

var temp1 = f i b o n a c c i (n−2) ;

var temp2 = f i b o n a c c i (n−1) ;

return temp1 + temp2 ;

}
� �
The function calls expressed by ’fibonacci(n-2)’ and ’fibonacci(n-2)’ are named as

’temp1’ and ’temp2’ at their parts, therefore the computation has been linearized (by

subsequent assignments).

7.2. Fragmentation

A continuation resumes a computation at a point it was captured. Since functions

has only a single entry point at the beginning, there should be a number of inter-

procedural functions (i.e. fragments), each of which has an effect of resuming from the

middle of original function. Because we previously transformed the fibonacci code into

39

ANF, all fragments begin with an assignment associated with a function call. Variables

needed by that function call would be the formal parameters of corresponding fragment.

Fragmented code of previously ANF-converted fibonacci program:� �
f unc t i on f i b o n a c c i a n f 1 (n) {

i f (n<=1) {

return n ;

}

var temp1 = f i b o n a c c i a n f 1 (n−2) ;

return f i b o n a c c i a n f 2 (temp1 , n) ;

}

f unc t i on f i b o n a c c i a n f 2 (temp1 , n) {

var temp2 = f i b o n a c c i a n f 1 (n−1) ;

return f i b o n a c c i a n f 3 (temp1 , temp2) ;

}

f unc t i on f i b o n a c c i a n f 3 (temp1 , temp2) {

return temp1 + temp2 ;

}
� �
To resume the computation from a particular point, each fragment performs a tail-

call to a subsequent fragment by passing the required parameters, which are originally

the free-variables of that fragment.

7.3. Closure Conversion

At the beginning of this chapter, we explained that a continuation would be

generated cooperatively by modified procedures appending their own part of the com-

putation and returning that object to other procedures. This has an implication that

a continuation would be a composition of subsequent frames, namely continuation

40

frames. Each frame should close over the values of live variables at the point where

the continuation was captured and have a unary function which would invoke a correct

fragment that resumes the computation from a desired point (Pettyjohn, Clements,

Marshall, Krishnamurthi, and Felleisen 2005).

For our continuing fibonacci example, closures would be automatically generated

because underlying language (Javascript in this case) supports anonymous functions

as lexical closures. In languages that do not support anonymous functions such as

C] or Java, class instances may be used to close over the live variables. In the last

section of this chapter, we use the prototyping mechanism of Javascript to show that

the anonymous functions are not the only solution to close over the live variables.

The prototype frame object for fibonacci anf2 shown below:� �
f i b f r ame2 = func t i on (temp1){

t h i s . temp1 = temp1 ;

} ;

f i b f r ame2 . prototype = new ContinuationFrame ;

f i b f r ame2 . prototype . Invoke = func t i on (r e tu rn va lu e){

return f i b o n a c c i a n f 3 (t h i s . temp1 , r e tu rn va lu e) ;

} ;
� �
7.4. Annotation

To collaborate a continuation building process by adding an appropriate frame to

an accumulated object, each function body should be annotated with an appropriate

mechanism. In Javascript, using exception handling mechanism may be the most

efficient solution for this task, while another strategy would be to return a special value

instead of normal return value or to use a global flag to indicate that a continuation

building is in progress.

41

Each function body are modified to collaborate both a computation and a contin-

uation building process. It is a three-way mechanism which includes three functionality

one procedure may perform:

• If a subsequent computation returned normally, return normally.

• If a subsequent computation throws an exception which is not an instance of a

SaveContinuationException, throw that exception without any modification.

• If a subsequent computation throws an exception which is an instance of a Save-

ContinuationException, append an appropriate frame and throw the accumulated

exception object (which is actually a continuation).

Annotated body of fibonacci anf2 :� �
f unc t i on f i b o n a c c i a n f 2 (temp1 , n) {

var temp2 ;

t ry {

var temp2 = f i b o n a c c i a n f 1 (n−1) ;

} catch (s ce) {

i f (s c e i n s t a n c e o f SaveContinuationException) {

s c e . Append(new f i b f r ame2 (temp1)) ;

}

throw sce ;

}

return f i b o n a c c i a n f 3 (temp1 , temp2) ;

}
� �

42

8. SUPPORT INFRASTRUCTURE

Although a transformed program has a capability of contributing the continuation

building process by saving its part of computation, however, the code must be run

within an additional framework which can build a continuation object from collected

frames. Next chapter explains the fundamental issues about the support infrastructure

which any transformed program would run in a continuation-based manner.

8.1. Modelling Continuations: An Exceptional Help

Continuations are composed of a series of continuation frames, which indicate

the exact copy of the native procedure-call stack. Therefore, its constructor consumes

the new and old frames and stores these appended bound to frames identifier.� �
var Continuat ion = func t i on (new frames , o ld f rames){

t h i s . frames = o ld f rames ;

whi le (new frames !== null){

// head frame i s a ContinuationFrame

var head frame = new frames . f i r s t ;

new frames = new frames . rest ;

i f (head frame . cont inuat i on !== null)

throw ” Continuat ion not empty?” ;

head frame . cont inuat i on = t h i s . frames ;

t h i s . frames = new FrameList (head frame , t h i s . frames) ;

}

} ;
� �
More importantly, the frames in the continuation are collected in an exception

object, namely SaveContinuationException, but this model (i.e. partial continuation)

should be turned into a real continuation in order for it to be used. In other words,

continuations are captured by subsequently throwing an accumulated SaveContinua-

tionException by each fragment, reaching to the very first continuation which will be

43

the root continuation of the system. Establishing this initial continuation has to be the

first thing the program do, because all other continuations have to be in the dynamic

context of the root in order for them to keep the original meaning of the program.

(Pettyjohn, Clements, Marshall, Krishnamurthi, and Felleisen 2005)� �
Continuat ion . E s t a b l i s h I n i t i a l C o n t i n u a t i o n = func t i on (thunk){

whi le (t rue){

t ry {

return Continuat ion . In i t i a lCont inuat ionAux (thunk) ;

} catch (wic) {

i f (! (wic i n s t a n c e o f With in In i t i a lCont inuat ionExcept i on)) {

throw wic ;

}

thunk = wic . thunk ;

}

}

} ;

// thunk −> ob j e c t

Continuat ion . In i t i a lCont inuat ionAux = func t i on (thunk) {

t ry {

return thunk () ;

} catch (sce) {

i f (s c e i n s t a n c e o f SaveContinuationException) {

var k = sce . toCont inuat ion () ;

throw new With in In i t i a lCont inuat ionExcept ion (makeWICThunk(k)) ;

} e l s e i f (s c e i n s t a n c e o f ReplaceContinuat ionExcept ion) {

throw new With in In i t i a lCont inuat ionExcept ion (

makeReplaceContinuationThunk (sce)) ;

44

} e l s e {

throw sce ;

}

}

} ;
� �
8.1.1. Building The Continuation

While the ’EstablishInitialContinuation’ keeps invoking the thunks, the ’Initial-

ContinuationAux’ function catches any ’SaveContinuationException’ that is thrown

and generate an actual continuation object through:� �
SaveContinuat ionException . prototype . toCont inuat ion = func t i on () {

return new Continuat ion (t h i s . new frames , t h i s . o ld f rames) ;

} ;
� �
This saves all frames appended together in the Continuation object. The con-

structor of Continuation assigns all the ’continuation’ fields of generated ’Continua-

tionFrames’. Here is the definition of ’ContinuationFrames’:� �
ContinuationFrame = func t i on (){

t h i s . cont inuat i on = null ;

} ;

ContinuationFrame . prototype . Reload =

func t i on (frames above , r e s t a r t v a l u e) {

var cont inue va lue ;

i f (f rames above === null) {

cont inue va lue = r e s t a r t v a l u e ;

} e l s e {

cont inue va lue =

frames above . f i r s t . Reload (frames above . rest , r e s t a r t v a l u e) ;

45

}

t ry {

return t h i s . Invoke (cont inue va lue) ;

} catch (sce) {

i f (! (s c e i n s t a n c e o f SaveContinuat ionException))

{ throw sce ; }

s ce . Append(t h i s . cont inuat i on) ;

throw sce ;

}

} ;
� �
The ’Reload’ function starts to invoke the ’Invoke’ procedures of subsequent

frames, starting from the last one, which would either be a ’CWCC frame0’ or ’Con-

tinuationApplication frame0’.

8.1.2. Invoking Continuations

After a certain number of procedure calls have been made, a continuation would

be built by subsequent exception throws in order to deallocate current activation

records (i.e. stack frames) from the run-time stack. To resume the computation from

that point, accumulated continuation should be invoked. This is done by ’Continua-

tion.CWCC’ (abbreviated for call-with-current-continuation):� �
Continuat ion .CWCC = func t i on (r e c e i v e r) {

t ry {

Continuat ion . BeginUnwind () ;

} catch (sce) {

i f (s c e i n s t a n c e o f SaveContinuationException)) {

s ce . Extend (new CWCC frame0(r e c e i v e r)) ;

throw sce ;

}

46

throw sce ;

}

return null ;

} ;
� �
When a ’Continuation.CWCC’ procedure invoked with a receiver, a ’SaveContin-

uationException’ is thrown and immediately extended with a ’CWCC frame0’. There-

fore, the ’CWCC frame0’ would always be the first frame in a continuation model (i.e.

SaveContinuationException). However, the invocation of ’Continuation.CWCC’ starts

a continuation building procedure, and all previous functions would extend the ’Save-

ContinuationException’ by appropriate frames, which are already hardcoded into the

function bodies by the annotation stage of the transformation.

The ’SaveContinuationException’ would then finally caught by ’InitialContinua-

tionAux’ function. The ’InitialContinuationAux’ would turn that exception object into

an actual ’Continuation’, by appending all its frames while arranging the ’continuation’

fields and modify its first frame to be a ’ContinuationApplication frame0’.� �
Cont inuat ionAppl i cat ion f rame0 = func t i on (){

ContinuationFrame . c a l l (t h i s) ;

} ;

Cont inuat ionAppl i cat ion f rame0 . prototype = new ContinuationFrame () ;

Cont inuat ionAppl i cat ion f rame0 . prototype . Invoke =

func t i on (r e t u r n v a l u e) { return r e t u r n v a l u e ; } ;
� �
The ’Invoke’ function of a ’ContinuationApplication frame0’ is an identity func-

tion, thus, returns its only parameter as a result. That result is the final value of the

computation which was suspended when the continuation building process is started.

Therefore a suspended computation would be resumed by a ’ContinuationFrame’ which

is a subsequent frame of ’ContinuationApplication frame0’ that would invoke an ap-

propriate function to continue an original execution.

47

8.2. Issues About Implementation

8.2.1. Live Variable Analysis

Our first implementation passes a thunk to ’WithinInitialContinuationException’

as follows:� �
Continuat ion . In i t i a lCont inuat ionAux = func t i on (thunk){
...

i f (s c e i n s t a n c e o f SaveContinuationException) {

var k = sce . toCont inuat ion () ;

throw new With in In i t i a lCont inuat ionExcept ion (

func t i on () {

var escap ingCont inuat ion = k . adjustForEscape () ;

return k . r e l oad (escap ingCont inuat ion) ;

}) ;

...

}
� �
The subsequent function ’EstablishInitialContinuation’ would catch the ’With-

inInitialContinuationException’ and invoke the thunk hardcoded into it as an anony-

mous function.

However, running this version led to a realization that the variable ’thunk’ in

’InitialContinuationAux’ is still alive even after a ’WithinInitialContinuationException’

is thrown and the ’InitialContinuationAux’ function is terminated. The reason was a

lexical closure generated by native Javascript interpreter closes over the ’thunk’ as well

as the other variables. This raise a problem of an unnecessary run-time stack growth

proportional to the number of continuation captures.

48

The solution was to build thunks in a clean environment:� �
var makeWICThunk = func t i on (k) {

return f unc t i on () {

var escap ingCont inuat ion = k . adjustForEscape () ;

return k . r e l oad (escap ingCont inuat ion) ;

} ;

} ;

var makeReplaceContinuationThunk = func t i on (r ce) {

return f unc t i on () {

return r c e . k . r e l oad (r ce . v) ;

} ;

} ;
� �
8.2.2. Continuation.apply

As mentioned before, no other continuation modeling technique involves any

method to apply a previously captured and stored continuation. Our technique ex-

tends the model of Pettyjohn et al. with an actual continuation application method.

With this way, our transformation and support infrastructure allows programs using

extensive powers of continuations to implement some non-trivial control models, such

as ’generate-one-element-at-a-time’ example in Section 5.3.3, to be able to run on a

stack-based imperative programming language, such as Javascript.� �
Continuat ion . apply = func t i on (k , v) {

throw new ReplaceContinuat ionExcept ion (k , v) ;

} ;
� �
’Continuation.apply’ function throws a ’ReplaceContinuationException’ which in-

cludes a continuation and a continue value. As distinct from ’SaveContinuationExcep-

tion’, the ’ReplaceContinuationException’ can pass through all the try/catch blocks of

a sequence of functions without swelling with various kinds of frames appended to it.

49

Additionally, a thunk prepared for a ’ReplaceContinuationException’ does not modify

implicit frames by replacing ’CWCC frame0’ with ’ContinuationApplication frame0’.

In other words, when a ’ReplaceContinuationException’ is raised, the first frame of

the ’FrameList’ representing implicit parts of a continuation would always be the

’CWCC frame0’.

Programming languages which support continuations usually provide two dis-

tinct operations for capturing and invoking a continuation, such as callcc and throw

constructs in SML, for capturing and invoking continuations respectively. However,

Scheme does not distinguish a function application from a continuation application.

While it provides some constructs, such as call/cc and let/cc, they are binding opera-

tions. Thus, continuations treated as if they were ordinary functions. (Krishnamurthi

2007)

This kind of distinction appears in the ’Invoke’ function of a ’CWCC frame0’. In

order to be able to run a program containing ’call/cc’, one needs to provide a mech-

anism (or a distinction) for applying not only continuations represented by an actual

Javascript function, but also continuations represented by a ’Continuation’ instance.

Therefore, our support infrastructure handles different representations with different

mechanisms:� �
CWCC frame0 . prototype . Invoke = func t i on (r e t u r n v a l u e) {

i f (t h i s . r e c e i v e r i n s t a n c e o f Continuat ion) {

return Continuat ion . apply (t h i s . r e c e i v e r , r e t u r n v a l u e) ;

}

return t h i s . r e c e i v e r (r e t u r n v a l u e) ;

} ;
� �
If the internal ’receiver’ of a ’CWCC frame0’ is an instance of a ’Continua-

tion’, it immediately throws a ’ReplaceContinuationException’ by invoking ’Contin-

uation.apply’ function, hereby causes a computation to be injected to an actual flow of

a program. Otherwise (if the ’receiver’ is an actual function), ’CWCC frame0.Invoke’

50

applies its receiver to the ’return value’.

Therefore, a program originally containing continuation capture or invocation

also can be run on a stack-based programming language (Javascript in this case) in a

proper tail calling environment using this method.

51

9. RESULTS

Using a first-class continuation model to obtain the proper tail calling behavior

in Javascript assures a constant stack space consumption, because a continuation is

built by using an exception object containing a list of frames added by each procedure

fragment. Whenever a fragment adds its own part, it throws a continuation object

to its caller as an exception, causing the deallocation of a corresponding activation

record in native run-time stack. Since an invocation of a continuation would resume

a computation from a point where it continuation is captured, computation would

continue with an empty stack.

9.1. Time Consumptions

In this section, we discuss on run-time performance of transformed programs

along with a concrete comparison with the most recent technique, namely Cheney on

M.T.A. (Baker 1994).

A possible decrease in run-time performance of our technique would be expected

from programs involving continuations, but currently there is no other technique which

involves both continuations and proper tail calls. Thus we must make a comparison

between two user programs without originally involving continuations (i.e. call/cc).

Fragments and closures (i.e. frames) would exhibit a performance decrease in

low call depths14 , because their effect is proportional to the frequency of continuation

capture and invocation. With a frequent use of continuations, there would be a little

performance penalty on run-time.

Averages of execution time, indicating performance test 15 results are shown in

14... indicates at how many procedure calls a continuation is built.
15Implementation and testing are done in Intel Pentium D i945P machine with Ubuntu 9.10 oper-

ating system on 1 GB memory. Cheney on M.T.A implementation is based on Danny Yoo’s code on:
http://hashcollision.org/tmp/cheney/cheney-test.html

52

Table 9.1:

Input Call Depth Cheney on M.T.A (ms) Continuation-Based (ms)

10 100 0.1 0.1

100 100 21.0 1.4

1000 100 217.4 5.6

10000 100 2209.9 33.7

100000 100 22080.2 304.6

10 10 20.5 1.1

100 10 204.2 3.7

1000 10 2070.3 12.2

10000 10 20417.8 84.4

100000 10 204845.9 792.6

Table 9.1. Run-time Comparison of Cheney on M.T.A. and The Continuation-based

Technique For Factorial program

Table 9.1 illustrates the run-time performance comparison between continuation-

based proper tail calling and ’Cheney on M.T.A.“, implementing a tail-recursive facto-

rial program for various inputs and call (i.e. trampoline) depths. The results16 indicate

that using a first-class continuation model to implement proper tail calls has a notable

advantage on classical trampolining and CPS with garbage collection.

9.2. Advantages and Drawbacks

The advantage of this technique is that it introduces the framework where tail

calls do not need any additional stack space. Furthermore, it provides an infrastructure

for an actual call/cc implementation on imperative stack-based languages, because the

ability to abandon a context and inject a computation to some context are preserved.

The generated code after the transformation as well as the support codes do not

16Results are obtained by taking the average of ten successive execution. Since the difference
between two techniques is obvious, no greater degree of test scale is needed.

53

exhibit a large performance decrease on run-time. Since a compiler would make similar

transformations, the ANF-conversion does not make a big effect on the performance.

However, a possible drawback would be the hygiene problem where a collusion occurs

between compiler temporaries and local identifiers.

Another drawback is closure conversion and annotation greatly increases the code

size as well as the fragmentation phase and the closure conversion after fragmentation

introduces some overhead on run-time but they are only used when a continuation is

invoked. Code annotation introduces some try/catch blocks but their effect on run-time

performance strongly depends on how frequently the continuations are captured.

54

10. CONCLUSIONS

The lack of proper tail calls in conventional imperative programming languages

forces programmers to employ a mathematically unnatural as well as a difficult ap-

proach to recursively defined data. For programs processing such data to become

maintainable, understanding and expendable programs, implementing novel features

from function programming languages for imperative ones is essential. We have pro-

posed that first-class continuation models in imperative programming languages makes

a proper tail calling not only possible, but efficient in terms of time complexity.

Furthermore, this approach creates the possibility that pedagogical tools, such

as Moby-WeScheme, could be fully supported to teach programming to freshman stu-

dents employing HTDP philosophy. Without such an improvement, schools with pro-

gramming education are forced to use offline programming environments. Thus, such

advancements in imperative programming languages help to use features from func-

tional programming languages without any inefficiency which could lead to a possible

discouragement in students.

Additionally, first-class continuation models on imperative programming lan-

guages, involving a continuation capture as well as invocation, allows programmers

to construct many different computational models with a lot of possible control mech-

anisms due to the extensive power of continuations, which provides a capability of

inspecting and modifying a native run-time stack even underlying language originally

does not support such operations.

To support this thesis, we have extended a transformation based on one from

Pettyjohn et al. Using stack inspection by first-class continuations to achieve a constant

stack space behavior of tail calls as well as each stage of a necessary transformation have

been stated and discussed. Implementation details and run-time support infrastructure

are explained. Concrete run-time results are shown, and based on these experiments

it is found that although our technique produces a much larger code, it is considerably

55

more efficient than the most recent technique, namely Cheney on M.T.A. method.

10.1. Future Work

Although the proposed transformation implements proper tail calling from first-

class continuations, a sound proof using denotational semantics should be provided.

This method implements an asymptotically safe-for-space behavior, but case by case

semantical analysis should be studied in order to be sure that this method correctly

implements proper tail calls in any case.

Moreover, we proposed an additional mechanism to also invoke a previously cap-

tured continuation. This will raise an interesting future work about a possible imple-

mentation of call/cc itself on conventional stack-based programming languages that do

not support run-time stack manipulation.

56

APPENDIX A: TRANSFORMED CALL/CC EXAMPLES

A.1. try-to-escape.js

load(”../support.js”);

Translation of the function:� �
(d e f i n e (f)

(c a l l / cc (lambda (k) (∗ 5 (k 4)))))
� �
The expected value from (f) should be 4.

This should translate to the javascript code:� �
var f = func t i on () {

return callCC (func t i on (k) {

return 5 ∗ Continuat ion . apply (k , 4) ;

}) ;

} ;
� �
which should then be a-normalized to:� �

var f = func t i on () {

return callCC (func t i on (k) {

var t = Continuat ion . apply (k , 4) ;

return 5 ∗ t ;

}) ;

} ;
� �
which should then be annotated to the following code:� �

var f = func t i on () {

return Continuat ion .CWCC(aRece iver) ;

57

} ;

var aRece iver = func t i on (k) {

var t ;

t ry {

t = Continuat ion . apply (k , 4) ;

} catch (sce) {

i f (! (s c e i n s t a n c e o f SaveContinuat ionException)) {

throw sce ;

}

s ce . Extend (new aRec iever0 f rame ()) ;

throw sce ;

}

return 5 ∗ t ;

} ;

var aRece iver0 = func t i on (t) {

return 5 ∗ t ;

}

var aRece iver f rame = func t i on () {

ContinuationFrame . c a l l (t h i s) ;

}

aRece iver f rame . prototype = new ContinuationFrame () ;

aRece iver f rame . prototype . Invoke = func t i on (v) {

return aRece iver0 (v) ;

}

aRece iver f rame . prototype . t oS t r i ng = func t i on () {

return ” [f 0 f rame] ” ;

}

// Let ’ s t ry to t e s t t h i s code .

58

var t e s t = func t i on () {

return Continuat ion . E s t a b l i s h I n i t i a l C o n t i n u a t i o n (

func t i on () { return f () ; }

) ;

}
� �
A.2. try-to-get-in.js

load(”../support.js”);

Translation of the function:� �
(d e f i n e return f a l s e)

(+ 1 (c a l l / cc

(lambda (cont)

(set ! return cont)

1))))
� �� �
> (return 22))

23
� �
This should translate to the javascript code:� �

var r e t = f a l s e ;

var g = func t i on () {

1 + callCC (func t i on (cont) {

r e t = cont ;

return 1 ;

}) ;

} ;

var f = func t i on () {

return Continuat ion . apply (ret , 22) ;

59

} ;
� �
which should then be a-normalized to:� �

var r e t = f a l s e ;

var g = func t i on (){

temp1 = callCC (func t i on (cont) {

r e t = cont ;

return 1 ;

}) ;

return 1 + temp1 ;

} ;

var f = func t i on (){

return Continuat ion . apply (ret , 22) ;

} ;
� �
which should then be annotated to the following code:� �
var r e t = f a l s e ;

var f = func t i on () {

return Continuat ion . apply (ret , 2 2) ;

} ;

var g = func t i on () {

var temp1 ;

t ry {

temp1 = Continuat ion .CWCC(func t i on (cont){

r e t = cont ;

return 1 ;

}) ;

} catch (sce) {

60

i f (! (s c e i n s t a n c e o f SaveContinuat ionException)) {

throw sce ;

}

s ce . Extend (new g frame0 ()) ;

throw sce ;

}

return 1 + temp1 ;

} ;

var g frame0 = func t i on () {

ContinuationFrame . c a l l (t h i s) ;

} ;

g frame0 . prototype = new ContinuationFrame () ;

g frame0 . prototype . Invoke = func t i on (r e t u r n v a l u e) {

return 1 + r e t u r n v a l u e ;

} ;

g frame0 . prototype . t oS t r i ng = func t i on () {

return ” [g frame0] ” ;

} ;

// Let ’ s t ry to t e s t t h i s code .

var t e s t = func t i on () {

Continuat ion . E s t a b l i s h I n i t i a l C o n t i n u a t i o n (

func t i on () { return g () ; }

) ;

return Continuat ion . E s t a b l i s h I n i t i a l C o n t i n u a t i o n (

func t i on () { return f () ; }

) ;

}
� �

61

A.3. generateOneElement.js

// Switching Control / Jump out-Back in

load(”../support.js”);

Original scheme code:� �
(d e f i n e (generate−one−element−at−a−time l s t)

(d e f i n e (cont ro l− s ta t e return)

(map

(lambda (element)

(set ! return (c a l l / cc

(lambda (resume−here)

(set ! c ont ro l− s ta t e resume−here)

(return element)))))

l s t)

(return ’ fe l l−down))

(lambda ()

(c a l l / cc cont ro l− s ta t e)))

(d e f i n e genera te−d ig i t

(generate−one−element−at−a−time ’ (0 1 2 3 4 5 6 7 8)))
� �� �
> (genera te−d ig i t)

0

> (genera te−d ig i t)

1

> (genera te−d ig i t)

2
� �
— These should translate to JS code: —� �

62

f unc t i on map(f , a r g l i s t){

i f (a r g l i s t . isEmpty ()){

return p l t . types . Empty .EMPTY;

}

return p l t . Kernel . cons (f (a r g l i s t . f i r s t ()) ,

map(f , a r g l i s t . rest ())) ;

}

f unc t i on generateOneElementAtATime (l s t){

f unc t i on c o n t r o l S t a t e (r e t){

map(func t i on (element){

r e t = callCC (func t i on (resumeHere){

c o n t r o l S t a t e = resumeHere ;

return Continuat ion . apply (ret , e lement) ; }) ;

} , l s t) ;

return Continuat ion . apply (ret , ” fel l−down ”) ;

}

return f unc t i on (){ return callCC (c o n t r o l S t a t e) ; } ;

}

var gene ra t eD ig i t =

generateOneElementAtATime (p l t . Kernel . l i s t ([0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9])) ;
� �
— After A-Normalization : —� �

f unc t i on map(f , a r g l i s t){

i f (a r g l i s t . isEmpty ()){

return p l t . types . Empty .EMPTY;

}

var temp1 = f (a r g l i s t . f i r s t ()) ;

var temp2 = map(f , a r g l i s t . rest ()) ;

63

return p l t . Kernel . cons (temp1 , temp2) ;

}

f unc t i on generateOneElementAtATime (l s t){

f unc t i on c o n t r o l S t a t e (r e t){

map(func t i on (element){

r e t = callCC (func t i on (resumeHere){

c o n t r o l S t a t e = resumeHere ;

return Continuat ion . apply (ret , e lement) ; }) ;

} , l s t) ;

return Continuat ion . apply (ret , ” fel l−down ”) ;

}

return f unc t i on (){ return callCC (c o n t r o l S t a t e) ; } ;

}

var gene ra t eD ig i t =

generateOneElementAtATime (p l t . Kernel . l i s t ([0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9])) ;

f unc t i on f () {

gene ra t eD ig i t () ;

gene ra t eD ig i t () ;

gene ra t eD ig i t () ;

}
� �
Which should then fragmented & annotated to the following code:� �

var f = func t i on (){

t ry {

gene ra t eD ig i t () ;

} catch (e){

i f (e i n s t a n c e o f SaveContinuationException){

64

e . Extend (new f f rame0 ()) ;

throw e ;

}

throw e ;

}

return f 1 () ;

} ;

var f f rame0 = func t i on (){

} ;

f f r ame0 . prototype = new ContinuationFrame () ;

f f r ame0 . prototype . Invoke = func t i on (r e t u r n v a l u e) {

return f 1 () ;

} ;

f f r ame0 . prototype . t oS t r i ng = func t i on () {

return ” [f f r ame0] ” ;

} ;

var f 1 = func t i on (){

t ry {

// a l e r t (” f 1 ”) ;

gene ra t eD ig i t () ;

} catch (e){

i f (e i n s t a n c e o f SaveContinuationException){

e . Extend (new f f rame1 ()) ;

throw e ;

}

throw e ;

}

return gene ra t eD ig i t () ;

} ;

var f f rame1 = func t i on (){

65

} ;

f f r ame1 . prototype = new ContinuationFrame () ;

f f r ame1 . prototype . Invoke = func t i on (r e t u r n v a l u e) {

return gene ra t eD ig i t () ;

} ;

f f r ame1 . prototype . t oS t r i ng = func t i on () {

return ” [f f r ame1] ” ;

} ;

var gene ra t eD ig i t =

generateOneElementAtATime (p l t . Kernel . l i s t ([0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9])) ;

f unc t i on generateOneElementAtATime (l s t){

var c o n t r o l S t a t e = func t i on (r e t){

t ry {

var func =

func t i on (element){

t ry {

r e t = Continuat ion .CWCC(func t i on (resumeHere){

c o n t r o l S t a t e = resumeHere ;

return Continuat ion . apply (ret , e lement) ;

}) ;

} catch (sce){

i f (! (s c e i n s t a n c e o f SaveContinuat ionException)) {

throw sce ; }

s ce . Extend (new func frame0 (element)) ;

throw sce ;

}

} ;

var func frame0 = func t i on (element){

66

t h i s . e lement = element ;

} ;

func f rame0 . prototype = new ContinuationFrame () ;

func f rame0 . prototype . Invoke = func t i on (r e t u r n v a l u e) {

r e t = r e t u r n v a l u e ;

} ;

func f rame0 . prototype . t oS t r i ng = func t i on () {

return ” [func frame0] ” ;

} ;

map(func , l s t) ;

} catch (e) {

i f (e i n s t a n c e o f SaveContinuationException) {

e . Extend (new con t ro lS t a t e f r ame (r e t)) ;

throw e ;

}

throw e ;

}

return Continuat ion . apply (ret , ” fel l−down ”) ;

} ;

var con t r o lS ta t e f r ame = func t i on (r e t){

t h i s . r e t = r e t ;

} ;

co n t r o l S ta t e f r ame . prototype = new ContinuationFrame () ;

co n t r o l S ta t e f r ame . prototype . Invoke = func t i on (r e t u r n v a l u e) {

return Continuat ion . apply (t h i s . ret , ” fel l−down ”) ;

} ;

co n t r o l S ta t e f r ame . prototype . t oS t r i ng = func t i on () {

return ” [c on t r o lS t a t e f r ame] ” ;

} ;

67

return f unc t i on (){

return Continuat ion .CWCC(c o n t r o l S t a t e) ;

} ;

}

f unc t i on map(f , a r g l i s t){

i f (a r g l i s t . isEmpty ()){

return p l t . types . Empty .EMPTY;

}

var temp1 ;

t ry {

temp1 = f (a r g l i s t . f i r s t ()) ;

} catch (sce){

i f (s c e i n s t a n c e o f SaveContinuationException) {

s ce . Extend (new map frame0 (f , a r g l i s t . rest ())) ;

throw sce ;

}

throw sce ;

}

return map1(temp1 , f , a r g l i s t) ;

}

f unc t i on map1(temp1 , f , a r g l i s t r e s t){

var temp2 ;

t ry {

temp2 = map(f , a r g l i s t r e s t) ;

} catch (sce){

i f (s c e i n s t a n c e o f SaveContinuationException){

s ce . Extend (new map frame1 (temp1)) ;

throw sce ;

}

throw sce ;

}

68

return map2(temp1 , temp2) ;

}

f unc t i on map2(temp1 , temp2){

return p l t . Kernel . cons (temp1 , temp2) ;

}

var map frame0 = func t i on (f , a r g l i s t){

t h i s . f = f ;

t h i s . a r g l i s t = a r g l i s t ;

} ;

map frame0 . prototype = new ContinuationFrame () ;

map frame0 . prototype . Invoke = func t i on (r e t u r n v a l u e) {

return map1(re turn va lue , t h i s . f , t h i s . a r g l i s t) ;

} ;

map frame0 . prototype . t oS t r i ng = func t i on () {

return ” [map frame0] ” ;

} ;

var map frame1 = func t i on (temp1){

t h i s . temp1 = temp1 ;

} ;

map frame1 . prototype = new ContinuationFrame () ;

map frame1 . prototype . Invoke = func t i on (r e t u r n v a l u e) {

return map2(t h i s . temp1 , r e t u r n v a l u e) ;

} ;

map frame1 . prototype . t oS t r i ng = func t i on () {

return ” [map frame1] ” ;

} ;

// t e s t i n g

69

var t e s t = func t i on () {

return Continuat ion . E s t a b l i s h I n i t i a l C o n t i n u a t i o n (

func t i on () { return f () ; }

) ;

} ;
� �

70

APPENDIX B: COMPLETE SUPPORT CODE

B.1. ContinuationFrame� �
ContinuationFrame = func t i on (){

t h i s . cont inuat i on = null ;

} ;

ContinuationFrame . prototype . Reload =

func t i on (frames above , r e s t a r t v a l u e) {

var cont inue va lue ;

i f (f rames above === null) {

cont inue va lue = r e s t a r t v a l u e ;

} e l s e {

cont inue va lue =

frames above . f i r s t . Reload (frames above . rest , r e s t a r t v a l u e) ;

}

t ry {

return t h i s . Invoke (cont inue va lue) ;

} catch (sce) {

i f (! (s c e i n s t a n c e o f SaveContinuat ionException))

{ throw sce ; }

s ce . Append(t h i s . cont inuat i on) ;

throw sce ;

}

} ;

ContinuationFrame . prototype . Invoke = func t i on (r e t u r n v a l u e) {

throw new Error (”Unimplemented ! ”) ;

71

} ;

ContinuationFrame . prototype . t oS t r i ng = func t i on () {

return ” [ContinuationFrame] ” ;

} ;
� �
B.2. FrameList� �

FrameList = func t i on (f i r s t , r e s t){

t h i s . f i r s t = f i r s t ;

t h i s . rest = r e s t ;

} ;

FrameList . reverse = func t i on (o r i g ina lFrameL i s t){

var r e s u l t = null ;

whi le (o r i g ina lFrameL i s t !=null){

r e s u l t = new FrameList (o r i g ina lFrameL i s t . f i r s t , r e s u l t) ;

o r i g ina lFrameL i s t = or i g ina lFrameL i s t . rest ;

}

return r e s u l t ;

} ;

FrameList . prototype . length = func t i on () {

temp1 = t h i s ;

var r e t = 0 ;

whi le (temp1 != null){

r e t++;

temp1 = temp1 . rest () ;

}

72

return r e t ;

} ;

FrameList . prototype . t oS t r i ng = func t i on () { return ” [FrameList] ” ; }
� �
B.3. SaveContinuationException� �

SaveContinuat ionException = func t i on (){

t h i s . new frames = null ;

t h i s . o ld f rames = null ;

} ;

SaveContinuat ionException . prototype . Extend = func t i on (extens i on) {

t h i s . new frames = new FrameList (extens ion , t h i s . new frames) ;

} ;

SaveContinuat ionException . prototype . Append = func t i on (o ld f rames) {

t h i s . o ld f rames = o ld f rames ;

} ;

SaveContinuat ionException . prototype . toCont inuat ion = func t i on () {

return new Continuat ion (t h i s . new frames , t h i s . o ld f rames) ;

} ;

SaveContinuat ionException . prototype . t oS t r i ng = func t i on () {

return ” [SaveContinuationException] ” ;

} ;

ReplaceContinuat ionExcept ion = func t i on (k , v) {

t h i s . k = k ;

t h i s . v = v ;

} ;
� �

73

B.4. Continuation� �
var Continuat ion = func t i on (new frames , o ld f rames){

t h i s . frames = o ld f rames ;

whi le (new frames !== null){

// head frame i s a ContinuationFrame

var head frame = new frames . f i r s t ;

new frames = new frames . rest ;

i f (head frame . cont inuat i on !== null)

throw ” Continuat ion not empty?” ;

head frame . cont inuat i on = t h i s . frames ;

t h i s . frames = new FrameList (head frame , t h i s . frames) ;

}

} ;

// Adjusts the cont inuat i on to be used to escape out o f the context .

Continuat ion . prototype . adjustForEscape = func t i on () {

var newFrames =

new FrameList (new Cont inuat ionAppl i cat ion f rame0 () , null) ;

return new Continuat ion (newFrames , t h i s . frames . rest) ;

} ;

Continuat ion . prototype . r e l oad = func t i on (r e s t a r t v a l u e){

var rev = FrameList . reverse (t h i s . frames) ;

return rev . f i r s t . Reload (rev . rest , r e s t a r t v a l u e) ;

} ;

Continuat ion . prototype . t oS t r i ng = func t i on () {

74

var r e t v a l = ” [Continuat ion] :\n” + ” frames ;\n” ;

var temp = t h i s . frames ;

whi le (temp !== null){

r e t v a l += temp . f i r s t + ”\n” ;

temp = temp . rest ;

}

return r e t v a l ;

} ;

Continuat ion . BeginUnwind = func t i on (){

throw new SaveContinuat ionException () ;

} ;

Continuat ion .CWCC = func t i on (r e c e i v e r){

t ry {

Continuat ion . BeginUnwind () ;

} catch (sce) {

i f (! (s c e i n s t a n c e o f SaveContinuat ionException)) {

throw sce ;

}

s ce . Extend (new CWCC frame0(r e c e i v e r)) ;

throw sce ;

}

return null ;

} ;

Continuat ion . apply = func t i on (k , v) {

throw new ReplaceContinuat ionExcept ion (k , v) ;

} ;

75

Continuat ion . E s t a b l i s h I n i t i a l C o n t i n u a t i o n = func t i on (thunk){

whi le (t rue){

t ry {

return Continuat ion . In i t i a lCont inuat ionAux (thunk) ;

} catch (wic) {

i f (! (wic i n s t a n c e o f With in In i t i a lCont inuat ionExcept i on)) {

throw wic ;

}

thunk = wic . thunk ;

}

}

} ;

// thunk −> ob j e c t

Continuat ion . In i t i a lCont inuat ionAux = func t i on (thunk) {

t ry {

return thunk () ;

} catch (sce) {

i f (s c e i n s t a n c e o f SaveContinuationException) {

var k = sce . toCont inuat ion () ;

throw new With in In i t i a lCont inuat ionExcept ion (makeWICThunk(k)) ;

} e l s e i f (s c e i n s t a n c e o f ReplaceContinuat ionExcept ion) {

throw new With in In i t i a lCont inuat ionExcept ion (

makeReplaceContinuationThunk (sce)) ;

} e l s e {

throw sce ;

}

}

76

} ;

var makeWICThunk = func t i on (k) {

return f unc t i on () {

var escap ingCont inuat ion = k . adjustForEscape () ;

return k . r e l oad (escap ingCont inuat ion) ;

}

} ;

var makeReplaceContinuationThunk = func t i on (r ce) {

return f unc t i on () {

return r c e . k . r e l oad (r ce . v) ;

} ;

} ;
� �
B.5. CWCC frame0� �

CWCC frame0 = func t i on (r e c e i v e r) {

ContinuationFrame . c a l l (t h i s) ;

t h i s . r e c e i v e r = r e c e i v e r ;

} ;

CWCC frame0 . prototype = new ContinuationFrame () ;

CWCC frame0 . prototype . Invoke = func t i on (r e t u r n v a l u e) {

i f (t h i s . r e c e i v e r i n s t a n c e o f Continuat ion) {

return Continuat ion . apply (t h i s . r e c e i v e r , r e t u r n v a l u e) ;

}

return t h i s . r e c e i v e r (r e t u r n v a l u e) ;

} ;

CWCC frame0 . prototype . t oS t r i ng = func t i on () {

return ” [CWCC frame0] ” ;

} ;
� �

77

B.6. ContinuationApplication frame0� �
Cont inuat ionAppl i cat ion f rame0 = func t i on () {

ContinuationFrame . c a l l (t h i s) ;

} ;

Cont inuat ionAppl i cat ion f rame0 . prototype = new ContinuationFrame () ;

Cont inuat ionAppl i cat ion f rame0 . prototype . Invoke =

func t i on (r e t u r n v a l u e) { return r e t u r n v a l u e ; } ;

Cont inuat ionAppl i cat ion f rame0 . prototype . t oS t r i ng =

func t i on () { return ” [Cont inuat ionAppl i cat ion f rame0] ” ; } ;
� �
B.7. WithinInitialContinuationException� �

With in In i t i a lCont inuat ionExcept ion = func t i on (thunk) {

t h i s . thunk = thunk ;

} ;

With in In i t i a lCont inuat ionExcept ion . prototype . t oS t r i ng =

func t i on () { return ” [With in In i t i a lCont inuat i onExcept ion] ” ; } ;
� �

78

APPENDIX C: COMPLETE TRANSFORMATION CODE

C.1. anormalize.ss� �
#lang s−exp ” . . / lang . s s ”

(require ” anormal− frag−helpers . s s ”)

(require ” . . / . . / c o l l e c t s /moby/ runtime / stx . s s ”)

(require ” box− local−defs . s s ”)

(require ” . . / t o p l e v e l . s s ”)

(require ” . . / env . s s ”)

; ; s t r i n g wi th which to name temporary v a r i a b l e s

(d e f i n e temp−begin ”temp˜a”)

; ; procedures t h a t we w i l l not c o n s i d e r p r i m i t i v e

; ; because they can p o t e n t i a l l y

; ; c a l l arguments t h a t might need a c o n t i n u a t i o n

(d e f i n e higher−order−prims ’

(andmap argmax argmin b u i l d− l i s t bu i ld− s t r ing compose

f i l t e r f o l d l f o l d r map memf ormap q u i c k s o r t sort))

; ; f i r s t−o r d e r ” p r i m i t i v e s ” not i n c l u d e d in t o p l e v e l . s s

(d e f i n e other−prims ’ (quote set !))

; ; s t a t e f u l hash o f p r i m i t i v e s and r e s e t procedure

(d e f i n e prims (make−hash))

(d e f i n e (reset−prims prim−hash) (set ! prims prim−hash))

; ; ge t− s t ruc t−de f s : (l i s t o f s−expr) −> (l i s t o f s−expr)

; ; t a k e s a l i s t o f t o p l e v e l s ta tements (a program)

; ; r e t u r n s a l l s t r u c t d e f i n i t i o n s appear ing at t o p l e v e l

(d e f i n e (get−struct−defs program)

(f i l t e r (lambda (statement)

79

(and (cons? statement)

(equal? (f i r s t statement) ’ de f i n e− s t ruc t)))

program))

; ; generate−prims : (l i s t o f s−expr) symbol −> (hash−of symbol boo lean)

; ; consumes a l i s t o f t o p l e v e l s ta tements (a program)

; ; r e t u r n s an environment c o n t a i n i n g a l l f i r s t−o r d e r p r i m i t i v e s f o r

; ; t h a t program

; ; t h e s e are the p r e d e f i n e d f i r s t−o r d e r p r i m i t i v e s

; ; and s t r u c t p r i m i t i v e s

(d e f i n e (generate−prims program language)

(l et ∗ ([prim−hash (make−hash)]

[add−key (lambda (key)

(i f (member key higher−order−prims)

(void)

(hash−set ! prim−hash key #t)))])

(begin

(for−each add−key other−prims)

(for−each add−key (env−keys (get−toplevel−env language)))

(map (lambda (s t ruct−de f)

(for−each add−key (get−struct−procs s t ruct−de f)))

(get−struct−defs program))

prim−hash)))

; ; pr imi t i ve−expr ? : s t x −> boo lean

; ; consumes a syntax o b j e c t

; ; r e t u r n s t r u e i f the o b j e c t r e p r e s e n t s a p r i m i t i v e express ion ,

; ; f a l s e o t h e r w i s e

; ; a p r i m i t i v e e x p r e s s i o n i s e i t h e r any atomic e x p r e s s i o n

; ; or a procedure a p p l i c a t i o n where the procedure i s a

; ; f i r s t−o r d e r p r i m i t i v e

(d e f i n e (pr imit ive−expr ? expr)

(or (s tx :atom? expr)

(hash−ref prims (stx−e (f i r s t (stx−e expr))) #f)))

80

; ; gen−temp−symbol : number −> symbol

; ; t a k e s a gensym counter and r e t u r n s a symbol f o r temporary

; ; b i n d i n g us ing t h a t gensym

(d e f i n e (gen−temp−symbol num)

(str ing−>symbol (format temp−begin num)))

; ; fold−anormal−help : (l i s t− o f s t x) −> l i n f o

; ; consumes a l i s t o f syntax o b j e c t s

; ; f o l d s anormal−help across the l i s t , r e t u r n i n g l i n f o where

; ; the re turn

; ; i s the l i s t o f r e t u r n s from each c a l l to anormal−help

; ; and the r a i s e i s the c o n c a t i n a t i o n o f the r a i s e l i s t s

; ; NOTE: t h e r e are some odd− looking c a l l s to r e v e r s e

; ; t h a t a l l o w f o r a f o l d l so the gensym numbers appear

; ; in a s e n s a b l e order f o r t e s t i n g

(d e f i n e (fold−anormal−help expr)

(l et ([r eve r s ed− r e su l t

(f o l d l (lambda (an−expr r e s t− i n f o)

(l et ([r ec− in fo (anormal−help an−expr)])

(make− l info

(cons (l i n f o− r e tu rn rec− in fo)

(l i n f o− r e tu rn r e s t− i n f o))

(append (reverse (l i n f o− r a i s e rec− in fo))

(l i n f o− r a i s e r e s t− i n f o)))))

(make− l info empty empty)

expr)])

(make− l info (reverse (l i n f o− r e tu rn r eve r s ed− r e su l t))

(reverse (l i n f o− r a i s e r eve r s ed− r e su l t)))))

; ; anormal−help : s t x −> l i n f o

; ; consumes a syntax o b j e c t r e p r e s e n t i n g an e x p r e s s i o n

; ; produces a s e m a n t i c a l l y e q u i v a l e n t e x p r e s s i o n as l i n f o

; ; where the re turn i s the f i n a l re turn sta tement

81

; ; and the r a i s e i s the o the r l o c a l b i n d i n g s c r e a t e d

; ; f o r a−normalizat ion

(d e f i n e (anormal−help expr)

; ; i f we have an atomic element there ’ s noth ing to

; ; a−normalize

(i f (s tx :atom? expr)

(make− l info expr empty)

; ; o t h e r w i s e we have a l i s t

(l et ∗ ([exp r− l i s t (stx−e expr)]

[f i r s t− e l t (stx−e (f i r s t expr− l i s t))])

(cond

; ; i f we have a d e f i n e statement , then

; ; a−normalize the body and put any r a i s e d

; ; e lements in a l o c a l i n s i d e the d e f i n e

[(equal? f i r s t− e l t ’ d e f i n e)

(l et ([body− info (anormal−help

(third expr− l i s t))])

(make− l info

(datum−>s tx f a l s e

(l i s t (f i r s t expr− l i s t)

(second expr− l i s t)

(i f (empty? (l i n f o− r a i s e body− info))

(l i n f o− r e tu rn body− info)

(l i s t ’ l o c a l

(l i n f o− r a i s e body− info)

(l i n f o− r e tu rn body− info))))

(stx− loc expr))

empty))]

; ; i f we have a l o c a l s ta tement then f i r s t

; ; do a s e l f−c o n t a i n e d a−normalize on each d e f i n i t i o n

; ; then a−normalize the body and append any new

; ; d e f i n i t i o n s to the o l d l i s t

82

[(equal? f i r s t− e l t ’ l o c a l)

(l et ([d e f s (map make−anormal

(stx−e (second expr− l i s t)))]

[body− info (anormal−help (third expr− l i s t))])

(make− l info

(datum−>s tx f a l s e

(l i s t (f i r s t expr− l i s t)

(append d e f s

(l i n f o− r a i s e body− info))

(l i n f o− r e tu rn body− info))

(stx− loc expr))

empty))]

; ; f o r i f s ta tements we a−normalize (and pass up the r a i s e)

; ; on the c o n d i t i o n and do s e l f−c o n t a i n e d a−normalize

; ; on both the then and e l s e c l a u s e s to make sure nohing

; ; i s e v a l u a t e d when i t shouldn ’ t be

[(equal? f i r s t− e l t ’ i f)

(l et ([c ond i t i on (anormal−help (second expr− l i s t))]

[then−clause (make−anormal (third expr− l i s t))]

[e l s e− c l au s e (make−anormal (fourth expr− l i s t))])

(i f (pr imit ive−expr ? (l i n f o− r e tu rn cond i t i on))

(make− l info

(datum−>s tx f a l s e

(l i s t ’ i f

(l i n f o− r e tu rn cond i t i on)

then−clause

e l s e− c l au s e)

(stx− loc expr))

(l i n f o− r a i s e cond i t i on))

(l et ([temp−symbol (gen−temp−symbol (gensym))])

(make− l info

(datum−>s tx f a l s e

(l i s t ’ i f

83

temp−symbol

then−clause

e l s e− c l au s e)

(stx− loc expr))

(append (l i n f o− r a i s e cond i t i on)

(l i s t (datum−>s tx

f a l s e

(l i s t ’ d e f i n e

temp−symbol

(l i n f o− r e tu rn cond i t i on))

(stx− loc (second expr− l i s t))

)))))))]

; ; wi th and , or , and beg in i t i s e a s i e s t to j u s t

; ; do a s e l f−c o n t a i n e d a−normalize on each sub−express ion

[(or (equal? f i r s t− e l t ’and)

(equal? f i r s t− e l t ’or)

(equal? f i r s t− e l t ’ begin))

(make− l info

(datum−>s tx f a l s e

(map make−anormal expr− l i s t)

(stx− loc expr))

empty)]

; ; f o r quote , d e f i n e− s t r u c t , and requ i re ,

; ; we don ’ t want to touch anyth ing

[(or (equal? f i r s t− e l t ’ quote)

(equal? f i r s t− e l t ’ d e f i n e− s t ruc t)

(equal? f i r s t− e l t ’ require))

(make− l info expr empty)]

; ; f o r any o t her express ion , a−normalize

; ; each sub−express ion

; ; then f o l d across the r e s u l t ,

; ; check ing i f each e x p r e s s i o n i s p r i m i t i v e

84

; ; i f i t i s , then l e a v e i t ,

; ; o t h e r w i s e c r e a t e a new d e f i n e b i n d i n g i t

; ; to a temporary v a r i a b l e and add t h a t

; ; to the l i s t o f r a i s e s

[e l s e

(l et ∗ ([arg− in fo (fold−anormal−help expr− l i s t)]

[anormal−expr

(f o l d l

(lambda (an−expr res t−args)

(i f (pr imit ive−expr ? an−expr)

(make− l info

(cons an−expr (l i n f o− r e tu rn res t−args))

(l i n f o− r a i s e res t−args))

(l et ([temp−symbol

(gen−temp−symbol (gensym))])

(make− l info

(cons (datum−>s tx f a l s e

temp−symbol

(stx− loc an−expr))

(l i n f o− r e tu rn res t−args))

(cons (datum−>s tx f a l s e

(l i s t ’ d e f i n e

temp−symbol

an−expr)

(stx− loc an−expr))

(l i n f o− r a i s e res t−args))))))

(make− l info empty empty)

(l i n f o− r e tu rn arg− in fo))])

(make− l info

(datum−>s tx f a l s e

(reverse (l i n f o− r e tu rn anormal−expr))

(stx− loc expr))

(append (l i n f o− r a i s e arg− in fo)

(reverse (l i n f o− r a i s e anormal−expr)))))]))))

85

; ; make−anroaml : s t x −> s t x

; ; consumes a syntax o b j e c t r e p r e s e n t i n g a s i n g l e

; ; stand−alone e x p r e s s i o n

; ; produces a s e m a n t i c a l l y e q u i v a l e n t e x p r e s s i o n in a−normal form

(d e f i n e (make−anormal expr)

(i f (s tx :atom? expr)

expr

(l et ([l in fo−out (anormal−help expr)])

(i f (empty? (l i n f o− r a i s e l in fo−out))

(l i n f o− r e tu rn l in fo−out)

(datum−>s tx f a l s e

(l i s t ’ l o c a l

(l i n f o− r a i s e l in fo−out)

(l i n f o− r e tu rn l in fo−out))

(stx− loc expr))))))

; ; anormal ize : s t x : l i s t −> s t x : l i s t

; ; consumes a syntax o b j e c t r e p r e s e n t i n g a program

; ; produces a s e m a n t i c a l l y e q u i v a l e n t program in a−normal form

; ; NOTE: t h i s i s what i s exported , so i t r e s e t s a l l s t a t e f u l f i e l d s

; ; and g e n e r a t e s the l i s t o f p r i m i t i v e s to i n s u r e i t a c t s

; ; as a pure f u n c t i o n

(d e f i n e (anormal ize program)

(l et ([r ead i ed (ready−anormalize program)])

(begin

(reset−gensym)

(reset−prims (generate−prims

(stx−>datum read i ed) ’ language−here))

(datum−>s tx f a l s e

(map make−anormal (stx−e read i ed))

(stx− loc r ead i ed)))))

86

(provide/ cont rac t

[anormal ize (s tx : l i s t ? . −> . s tx : l i s t ?)])
� �
C.2. fragmenter.ss� �

#lang s−exp ” . . / lang . s s ”

(require ” anormal− frag−helpers . s s ”)

(require ” anormal ize . s s ”)

(require ” . . / . . / c o l l e c t s /moby/ runtime / stx . s s ”)

; ; s t r i n g s to prepend onto fragments and name anonymous e x p r e s s i o n s

(d e f i n e frag−prepend ” f ˜ a ˜a”)

(d e f i n e statement−name ” statement ˜a”)

; ; f i n f o i s used to ho ld f ragmenta t ion in format ion

; ; − re turn : s t x r e p r e s e n t i n g the new e x p r e s s i o n

; ; − f ragments : (l i s t− o f s t x) c o n t a i n i n g the d e f i n i t i o n s

; ; o f new fragments

; ; − gensym : a gensym counter count ing the number o f fragments

(de f i n e− s t ruc t f i n f o (return f ragments gensym))

; ; s p l i t i s used when s p l i t t i n g a l i s t o f d e f i n i t i o n s i n s i d e l o c a l

; ; f ragmenta t ion

; ; − keep : (l i s t− o f s t x) , a l i s t o f d e f i n i t i o n s

; ; to keep (and fragment)

; ; − curren t : (or s t x f a l s e) , the f i r s t v a l u e d e f i n i t i o n ,

; ; k ep t in t h i s fragment

; ; − move : (l i s t− o f s t x) , the reamining v a l u e d e f i n i t i o n s

; ; to fragment out

(de f i n e− s t ruc t sp l i t (keep cur rent move))

; ; get−bound−id : s t x −> symbol

; ; consumes a d e f i n i t i o n (as a syntax o b j e c t)

87

; ; r e t u r n s the id bound by the d e f i n e s ta tement

(d e f i n e (get−bound−id defn)

(i f (stx−begins−with ? defn ’ d e f i n e)

(i f (s tx :atom? (second (stx−e defn)))

(stx−e (second (stx−e defn)))

(stx−e (f i r s t (stx−e (second (stx−e defn))))))

(error ’ get−bound−id

(format ” expected d e f i n i t i o n , found : ˜a” defn))))

; ; s p l i t− d e f− l i s t : (l i s t o f s t x) −> s p l i t

; ; consumes a l i s t o f d e f i n i t i o n s

; ; r e t u r n s a s p l i t where the keep i s the beg inn ing o f the input l i s t

; ; up to (and i n c l u d i n g) the f i r s t v a l u e d e f i n i t i o n

; ; t h a t i s not a boxed undef ined

; ; the current i s t h a t f i r s t d e f i n i t i o n

; ; i f i t e x i s t s (f a l s e o t h e r w i s e)

; ; and the move i s e v e r y t h i n g a f t e r t h a t d e f i n i t i o n

(d e f i n e (s p l i t−d e f− l i s t d e f− l i s t)

(cond

[(empty? d e f− l i s t) (make−split empty #f empty)]

[(and (cons? d e f− l i s t)

(stx−begins−with ? (f i r s t d e f− l i s t) ’ d e f i n e))

(l et ([components (stx−e (f i r s t d e f− l i s t))])

(i f (or (s tx : l i s t ? (second components))

(equal? (stx−>datum (third components))

’ (box ’ undef ined)))

(l et ([rec−return (s p l i t−d e f− l i s t (rest d e f− l i s t))])

(make−split (cons (f i r s t d e f− l i s t)

(sp l i t−keep rec−return))

(s p l i t− c u r r e n t rec−return)

(split−move rec−return)))

(make−split (l i s t (f i r s t d e f− l i s t))

(f i r s t d e f− l i s t)

88

(rest d e f− l i s t))))]

[e l s e (error ’ s p l i t−d e f− l i s t

(format ” expected l i s t o f d e f i n i t i o n s , found : ˜a”

d e f− l i s t))]))

; ; fragment−help : s t x (l i s t− o f symbol) symbol number −> f i n f o

; ; consumes an e x p r e s s i o n (as a syntax o b j e c t) ,

; ; a l i s t o f arguments f o r any new fragments

; ; (genera ted by f i n d i n g c l o s u r e s) ,

; ; the name o f the procedure / s ta tement we ’ re fragmenting ,

; ; and a counter to t e l l us how many fragments we ’ ve a l r e a d y made

; ; produces f i n f o where the re turn i s the f i r s t fragment

; ; (or the e x p r e s s i o n i t s e l f) ,

; ; the fragments are a l l o the r fragments o f the current e x p r e s s i o n

; ; and the gensym i s the index o f the next fragment

(d e f i n e (fragment−help expr args name frag−counter)

; ; i f we have an atomic element there ’ s noth ing to fragment

(i f (s tx :atom? expr)

(make−f info expr empty frag−counter)

; ; o t h e r w i s e we have a l i s t

(l et ∗ ([exp r− l i s t (stx−e expr)]

[f i r s t− e l t (stx−e (f i r s t expr− l i s t))])

(cond

; ; i f we have a LOCAL, then we may have fragments

; ; u n l e s s e v e r y t h i n g i s e i t h e r a procedure or boxed

; ; unde f ine

[(equal? f i r s t− e l t ’ l o c a l)

(l et ∗

(; ; f i r s t s p l i t the d e f i n i t i o n l i s t i n t o

; ; procedures / boxed undef ined

; ; and temporary s ta tement d e f i n i t i o n s

; ; and g e t the i d e n t i f i e r s bound by

89

; ; the f i r s t s e t o f d e f i n e s

[s p l i t−d e f s (s p l i t−d e f− l i s t

(stx−e (second expr− l i s t)))]

[new−bound−ids (map get−bound−id

(sp l i t−keep s p l i t−d e f s))]

; ; make a r e c u r s i v e c a l l ,

; ; t h a t depends on the d e f i n i t i o n s

[r ec− re s t

; ; i f t h e r e are no temporary v a l u e d e f i n i t i o n s

; ; a t a l l then j u s t recur on the body o f the l o c a l

; ; because we don ’ t need any more fragments

(i f (f a l s e ? (s p l i t− c u r r e n t s p l i t−d e f s))

(fragment−help (third expr− l i s t)

(append new−bound−ids args)

name

frag−counter)

; ; o t h e r w i s e recur on a new procedure fragment

(fragment−help

(datum−>s tx

f a l s e

(l i s t ’ d e f i n e

(cons (str ing−>symbol

(format frag−prepend

frag−counter

name))

(append new−bound−ids args))

; ; the c o n t e n t s o f the

; ; new d e f i n i t i o n s are j u s t

; ; the l o c a l body i f we h i t the

; ; l a s t temp d e f i n i t i o n

(i f (empty? (split−move s p l i t−d e f s))

(third expr− l i s t)

; ; or a new l o c a l wi th the r e s t

; ; o t h e r w i s e

90

(l i s t ’ l o c a l

(split−move s p l i t−d e f s)

(third expr− l i s t))))

(stx− loc expr))

args

name

(add1 frag−counter)))]

[more−fragments ? (stx−begins−with ?

(f i n f o− r e tu rn rec− re s t)

’ d e f i n e)])

; ; now make new l i n f o wi th the fragmented

; ; l o c a l d e f i n i t i o n s

; ; t h a t we kept , and e i t h e r a c a l l to

; ; the next fragment or the fragmented

; ; body o f the l o c a l

; ; the fragments are the r e c u r s i v e fragments

; ; wi th the new fragment consed on i f i t e x i s t s

(make−f info

(datum−>s tx

f a l s e

(l i s t ’ l o c a l

(apply append

(map get− fragments

(sp l i t−keep s p l i t−d e f s)))

(i f more−fragments ?

(second (stx−e (f i n f o− r e tu rn rec− re s t)))

(f i n f o− r e tu rn rec− re s t)))

(stx− loc expr))

(i f more−fragments ?

(cons (f i n f o− r e tu rn rec− re s t)

(f in fo− f ragments rec− re s t))

(f in fo− f ragments rec− re s t))

(f info−gensym rec− re s t)))]

91

; ; i f we have a BEGIN, AND, or OR,

; ; then r e c u r s i v e l y fragment a new

; ; procedure wi th a l l but the f i r s t e x p r e s s i o n

; ; then re turn f i n f o where the re turn i s

; ; the same type o f s ta tement

; ; t h a t f i r s t c a l l s the f i r s t i n s t r u c t i o n

; ; and then the next fragment

; ; and the r a i s e i s the r e s t o f the fragments

[(or (equal? f i r s t− e l t ’ begin)

(equal? f i r s t− e l t ’and)

(equal? f i r s t− e l t ’or))

(l et ∗ ([f i r s t− e x p r

(fragment−help (second expr− l i s t)

args name

frag−counter)]

[r ec− re s t

(fragment−help

(datum−>s tx

f a l s e

(l i s t ’ d e f i n e

(cons (str ing−>symbol

(format frag−prepend

(finfo−gensym f i r s t− e x p r)

name))

args)

(i f (empty? (rest

(rest

(rest expr− l i s t))))

(third expr− l i s t)

(cons (f i r s t expr− l i s t)

(rest (rest expr− l i s t)))))

(stx− loc expr))

args

name

92

(add1 (finfo−gensym f i r s t− e x p r)))])

(make−f info

(datum−>s tx f a l s e

(l i s t (f i r s t expr− l i s t)

(f i n f o− r e tu rn f i r s t− e x p r)

(second

(stx−e

(f i n f o− r e tu rn rec− re s t))))

(stx− loc expr))

(append (f in fo− f ragments f i r s t− e x p r)

(cons (f i n f o− r e tu rn rec− re s t)

(f in fo− f ragments rec− re s t)))

(f info−gensym rec− re s t)))]

; ; i f we have a DEFINE, then c o l l e c t the arguments

; ; f o r the c lo sur e , then r e c u r s i v e l y fragment the body ,

; ; and re turn the fragmented body i n s i d e the same d e f i n e

; ; (wi th the fragments in the r a i s e)

[(equal? f i r s t− e l t ’ d e f i n e)

(l et ∗ ([new−args

(i f (s tx : l i s t ? (second expr− l i s t))

(rest (stx−>datum (second expr− l i s t)))

empty)]

[f i l t e r e d− a r g s

(append new−args

(f i l t e r (lambda (e lt)

(not (member elt new−args)))

args))]

[r ec− re s t (fragment−help (third expr− l i s t)

f i l t e r e d− a r g s

name

frag−counter)])

(make−f info

(datum−>s tx f a l s e

93

(l i s t ’ d e f i n e

(second expr− l i s t)

(f i n f o− r e tu rn rec− re s t))

(stx− loc expr))

(f in fo− f ragments rec− re s t)

(f info−gensym rec− re s t)))]

; ; wi th an IF statement we need to r e c u r s i v e l y fragment

; ; both the then and e l s e c l a u s e s

[(equal? f i r s t− e l t ’ i f)

(l et ∗ ([then− info

(fragment−help (third expr− l i s t)

args name

frag−counter)]

[e l s e− i n f o

(fragment−help (fourth expr− l i s t)

args

name

(finfo−gensym then− info))])

(make−f info

(datum−>s tx f a l s e

(l i s t ’ i f

(second expr− l i s t)

(f i n f o− r e tu rn then− info)

(f i n f o− r e tu rn e l s e− i n f o))

(stx− loc expr))

(append (f in fo− f ragments then− info)

(f in fo− f ragments e l s e− i n f o))

(finfo−gensym e l s e− i n f o)))]

; ; i f we have any o the r type o f e x p r e s s i o n

; ; then i t cannot conta in more than one c a l l

; ; to anyth ing o t her than a f i r s t−o r d e r p r i m i t i v e

; ; s i n c e e v e r y t h i n g i s a l r e a d y in a−normal form ,

94

; ; so s imply re turn i t

[e l s e (make−f info expr empty frag−counter)]))))

; ; get− fragments : s t x −> (l i s t− o f s t x)

; ; consumes a syntax o b j e c t r e p r e s e n t i n g a t o p l e v e l e x p r e s s i o n

; ; fragments the e x p r e s s i o n i n t o mini−procedures and r e t u r n s a l i s t

; ; o f t h o s e fragments

; ; NOTE: assumes the input has a l r e a d y been run through anormal ize

(d e f i n e (get− fragments expr)

(l et ∗ ([name (i f (stx−begins−with ? expr ’ d e f i n e)

(get−bound−id expr)

(str ing−>symbol

(format statement−name (gensym))))]

[f r ag− i n fo (fragment−help expr empty name 0)])

(reverse (cons (f i n f o− r e tu rn f rag− i n fo)

(f in fo− f ragments f rag− i n fo)))))

; ; fragment : s t x : l i s t ? −> s t x : l i s t ?

; ; consumes a syntax o b j e c t r e p r e s e n t i n g a program

; ; r e t u r n s a s e m a n t i c a l l y e q u i v a l e n t program t h a t has been

; ; c o m p l e t e l y a−normalized and fragmented

; ; NOTE: r e s e t s the s t a t e f u l gensym counter to i n s u r e i t a c t s

; ; as a pure f u n c t i o n

(d e f i n e (fragment program)

(begin

(reset−gensym)

(datum−>s tx f a l s e

(apply append (map get− fragments

(stx−e (anormal ize program))))

(stx− loc program))))

95

(provide/ cont rac t

[fragment (s tx : l i s t ? . −> . s tx : l i s t ?)])
� �
C.3. eliminate-anonymous.ss� �

#lang s−exp ” . . / lang . s s ”

(require ” anormal− frag−helpers . s s ”)

(require ”munge−ids . s s ”)

(require ” . . / . . / c o l l e c t s /moby/ runtime / stx . s s ”)

; ; format s t r i n g to g i v e names to former ly anonymous procedures

(d e f i n e anon−prepend ”anon˜a”)

; ; fold−elim−anon−help : s t x : l i s t −> l i n f o

; ; consumes a s t x : l i s t

; ; r e t u r n s the r e s u l t o f f o l d i n g elim−anon−help over

; ; the e lements o f expr

(d e f i n e (fold−elim−anon−help expr)

(l o c a l [(d e f i n e rever sed− i n fo

(f o l d l (lambda (an−expr new−info)

(l et ([r ec− in fo (elim−anon−help an−expr)])

(make− l info (cons (l i n f o− r e tu rn rec− in fo)

(l i n f o− r e tu rn new−info))

(append (l i n f o− r a i s e new−info)

(l i n f o− r a i s e rec− in fo)))))

(make− l info empty empty)

(stx−e expr)))]

(make− l info (datum−>s tx f a l s e

(reverse (l i n f o− r e tu rn rever sed− i n fo))

(stx− loc expr))

(l i n f o− r a i s e r eve r sed− i n fo))))

; ; elim−anon−help : s t x −> l i n f o

96

; ; consumes a syntax o b j e c t wi th a v a l i d e x p r e s s i o n i n s i d e

; ; r e t u r n s l i n f o where the re turn i s the same statement

; ; but wi th a l l anonymous procedures named , and

; ; the r a i s e i s new l o c a l d e f i n i t i o n s to be p lac ed i n s i d e

; ; the next b i n d i n g form

(d e f i n e (elim−anon−help expr)

; ; i f we have an atomic element , re turn i t

(i f (s tx :atom? expr)

(make− l info expr empty)

; ; o t h e r w i s e we have a l i s t

(l et ∗ ([exp r− l i s t (stx−e expr)]

[f i r s t− e l t (stx−e (f i r s t expr− l i s t))])

(cond

; ; lambda e x p r e s s i o n s g e t l i f t e d

[(equal? f i r s t− e l t ’ lambda)

(l et ([new−proc−name

(str ing−>symbol

(format anon−prepend (gensym)))]

[r ec− in fo (elim−anon−help (third expr− l i s t))])

(make− l info

(datum−>s tx f a l s e new−proc−name (stx− loc expr))

(l i s t

(datum−>s tx f a l s e

(l i s t ’ d e f i n e

(cons new−proc−name

(stx−e (second expr− l i s t)))

(i f (empty? (l i n f o− r a i s e rec− in fo))

(l i n f o− r e tu rn rec− in fo)

(l i s t ’ l o c a l

(l i n f o− r a i s e rec− in fo)

(l i n f o− r e tu rn rec− in fo))))

(stx− loc expr)))))]

97

; ; d e f i n e i s a b i n d i n g form , so l i f t e v e r y t h i n g i n s i d e i t

; ; then put the new l i f t s in a l o c a l j u s t i n s i d e

; ; (i f they e x i s t)

; ; but make sure the d e f i n i t i o n uses s y n t a c t i c sugar

; ; f o r procedure d e f i n i t i o n s so we don ’ t u n n e c e s s a r i l y

; ; name already−named procedures

[(equal? f i r s t− e l t ’ d e f i n e)

(l et ∗ ([sugared−def (ensugar expr)]

[r ec− in fo

(elim−anon−help

(third (stx−e sugared−def)))])

(make− l info

(datum−>s tx f a l s e

(l i s t ’ d e f i n e

(second (stx−e sugared−def))

(i f (empty? (l i n f o− r a i s e rec− in fo))

(l i n f o− r e tu rn rec− in fo)

(l i s t ’ l o c a l

(l i n f o− r a i s e rec− in fo)

(l i n f o− r e tu rn rec− in fo))))

(stx− loc expr))

empty))]

; ; l o c a l i s another b i n d i n g form

; ; so r e c u r s i v e l y l i f t both the d e f i n i t i o n s and the body

; ; then add the new b i n d i n g s to the l i s t o f b i n d i n g s

; ; on the l o c a l

[(equal? f i r s t− e l t ’ l o c a l)

(l et ([new−defs (map elim−anon

(stx−e (second expr− l i s t)))]

[r ec− in fo (elim−anon−help (third expr− l i s t))])

(make− l info

(datum−>s tx f a l s e

(l i s t ’ l o c a l

98

(append new−defs

(l i n f o− r a i s e rec− in fo))

(l i n f o− r e tu rn rec− in fo))

(stx− loc expr))

empty))]

; ; i f we have a quote or d e f i n e− s t r u c t , we l e t i t be

[(or (equal? f i r s t− e l t ’ quote)

(equal? f i r s t− e l t ’ d e f i n e− s t ruc t)

(equal? f i r s t− e l t ’ require))

(make− l info expr empty)]

; ; each s ta tement i s i t s own s e l f−c o n t a i n e d t h i n g in a

; ; beg in so j u s t map elim−anon across them

[(equal? f i r s t− e l t ’ begin)

(make− l info (datum−>s tx f a l s e

(map elim−anon expr− l i s t)

(stx− loc expr))

empty)]

; ; o t h e r w i s e f o l d across each sub−express ion

[e l s e (fold−elim−anon−help expr)]))))

; ; elim−anon : s t x −> s t x

; ; consumes an e x p r e s s i o n as a syntax o b j e c t and names

; ; a l l anonymous procedures

(d e f i n e (elim−anon expr)

(l et ([l i f t e d (elim−anon−help expr)])

(i f (empty? (l i n f o− r a i s e l i f t e d))

(l i n f o− r e tu rn l i f t e d)

(datum−>s tx f a l s e

(l i s t ’ l o c a l

(l i n f o− r a i s e l i f t e d)

(l i n f o− r e tu rn l i f t e d))

99

(stx− loc expr)))))

; ; name−anon−procs : s t x −> s t x

; ; consumes a syntax o b j e c t r e p r e s e n t i n g a program

; ; produces a syntax o b j e c t r e p r e s e n t i n g a s e m a n t i c a l l y e q u i v a l e n t

; ; program , but wi th no anonymous procedures

; ; NOTE: This procedure only e x i s t s to e x p o r t a s e l f−c o n t a i n e d

; ; procedure t h a t r e s e t s the s t a t e to i n s u r e i t a c t s as a

; ; pure f u n c t i o n . I t i s o t h e r w i s e elim−anon

(d e f i n e (name−anon−procs expr)

(begin

(reset−gensym)

(elim−anon expr)))

; ; l i f t− s t r u c t− d e f s : s t x −> s t x

; ; consumes a syntax o b j e c t r e p r e s e n t i n g a t o p l e v e l program

; ; r e t u r n s a s e m a n t i c a l l y e q u i v a l e n t program with a l l l o c a l

; ; s t r u c t d e f i n i t i o n s r a i s e d to top l e v e

; ; NOTE: This procedure munges i d e n t i f i e r s to i n s u r e no c o l l i s i o n s

; ; s i n c e i t p o t e n t i a l l y i n c r e a s e s the scope o f

; ; d i f f e r e n t d e f i n i t i o n s

(d e f i n e (l i f t− s t r u c t−d e f s expr)

(l et ([l i f t e d (l i f t− s t ruc t−de f s−he lp (munge− ident i f i e r s expr))])

(datum−>s tx f a l s e

(append (l i n f o− r a i s e l i f t e d)

(stx−e (l i n f o− r e tu rn l i f t e d)))

(stx− loc expr))))

; ; f o l d− l i f t− s t r u c t−d e f s−h e l p : (l i s t− o f s t x) −> l i n f o

; ; consumes a l i s t o f syntax o b j e c t s and f o l d s

; ; l i f t− s t r u c t−d e f s−h e l p over the l i s t

; ; producing l i n f o where the re turn i s the l i f t e d re turn

100

; ; and the r a i s e i s a l l the r a i s e s appended t o g e t h e r

(d e f i n e (f o ld− l i f t− s t ruc t−de f s−he lp expr− l i s t)

(f o l d r (lambda (expr i n f o)

(l et ([output (l i f t− s t ruc t−de f s−he lp expr)])

(make− l info (cons (l i n f o− r e tu rn output)

(l i n f o− r e tu rn i n f o))

(append (l i n f o− r a i s e output)

(l i n f o− r a i s e i n f o)))))

(make− l info empty empty)

expr− l i s t))

; ; l i f t− s t r u c t−d e f s−h e l p : s t x −> l i n f o

; ; consumes a syntax o b j e c t r e p r e s e n t i n g an e x p r e s s i o n

; ; produces an l i n f o where the re turn i s a syntax o b j e c t

; ; r e p r e s e n t i n g the same express ion , but miss ing a l l

; ; l o c a l s t r u c t d e f i n i t i o n s and the r a i s e i s

; ; a l i s t o f removed s t r u c t d e f i n i t i o n s

(d e f i n e (l i f t− s t ruc t−de f s−he lp expr)

; ; we have an atomic element , t h e r e cannot be

; ; any l o c a l s t r u c t d e f i n i t i o n s so re turn the element

(i f (s tx :atom? expr)

(make− l info expr empty)

; ; o t h e r w i s e we have a l i s t

(l et ∗ ([exp r− l i s t (stx−e expr)]

[f i r s t− e l t (stx−e (f i r s t expr− l i s t))])

(cond

; ; i f we have a l o c a l , we need to g e t

; ; the l o c a l s t r u c t d e f i n i t i o n s

[(equal? f i r s t− e l t ’ l o c a l)

(l et ([s t ruc t−de f s

(f i l t e r (lambda (a−def)

(equal? (stx−e (f i r s t (stx−e a−def)))

’ d e f i n e− s t ruc t))

101

(stx−e (second expr− l i s t)))]

[other−defs

(f o ld− l i f t− s t ruc t−de f s−he lp

(f i l t e r (lambda (a−def)

(equal? (stx−e (f i r s t (stx−e a−def)))

’ d e f i n e))

(stx−e (second expr− l i s t))))])

(make− l info

(datum−>s tx f a l s e

(i f (empty? (l i n f o− r e tu rn other−defs))

(third expr− l i s t)

(l i s t ’ l o c a l

(l i n f o− r e tu rn other−defs)

(third expr− l i s t)))

(stx− loc expr))

(append s t ruc t−de f s

(l i n f o− r a i s e other−defs))))]

; ; i f we see quote , d e f i n e− s t r u c t (o u t s i d e a l o c a l) ,

; ; or r e q u i r e ; then don ’ t touch anyth ing

[(or (equal? f i r s t− e l t ’ quote)

(equal? f i r s t− e l t ’ d e f i n e− s t ruc t)

(equal? f i r s t− e l t ’ require))

(make− l info expr empty)]

; ; o t h e r w i s e r e c u r s i v e l y f o l d over each element

[e l s e (l et ([f o l d e d− l i s t

(f o ld− l i f t− s t ruc t−de f s−he lp expr− l i s t)])

(make− l info (datum−>s tx f a l s e

(l i n f o− r e tu rn f o l d e d− l i s t)

(stx− loc expr))

(l i n f o− r a i s e f o l d e d− l i s t)))]))))

(provide/ cont rac t

102

[name−anon−procs (s tx ? . −> . s tx ?)]

[l i f t− s t r u c t−d e f s (s tx ? . −> . s tx ?)])
� �
C.4. box-local-defs.ss� �

#lang s−exp ” . . / lang . s s ”

(require ” anormal− frag−helpers . s s ”)

(require ”elim−anon . s s ”)

(require ” . . / . . / c o l l e c t s /moby/ runtime / stx . s s ”)

; ; unbox−ids : s t x (l i s t− o f symbol) −> s t x

; ; consumes a symbo l i c e x p r e s s i o n and a l i s t o f i d e n t i f i e r s to

; ; unbox r e t u r n s the symbo l ic e x p r e s s i o n wi th each i n s t a n c e o f

; ; the i d e n t i f i e r wrapped in an unbox

(d e f i n e (unbox−ids expr i d s)

(l et ([contents (stx−e expr)])

(cond

[(symbol ? contents) (i f (member contents i d s)

(datum−>s tx f a l s e

(l i s t ’ unbox expr)

(stx− loc expr))

expr)]

[(cons? contents) (datum−>s tx f a l s e

(map (lambda (an−expr)

(unbox−ids an−expr i d s))

contents)

(stx− loc expr))]

[e l s e expr])))

; ; box− l oca l s : s t x −> s t x

; ; consumes a syntax o b j e c t

; ; r e t u r n s a s e m a n t i c a l l y e q u i v a l e n t e x p r e s s i o n wi th

; ; l o c a l v a l u e d e f i n i t i o n s c r e a t e d us ing set−box !

103

(d e f i n e (box− loca ls expr)

; ; atomic e x p r e s s i o n s cannot conta in l o c a l s , so re turn expr

(i f (s tx :atom? expr)

expr

; ; o t h e r w i s e we have a l i s t

(l et ∗ ([exp r− l i s t (stx−e expr)]

[f i r s t− e l t (stx−e (f i r s t expr− l i s t))])

(cond

; ; i f we have a l o c a l s ta tement

; ; s e p a r a t e the d e f i n i t i o n s i n t o e x p l i c i t

; ; lambda e x p r e s s i o n s and e v e r y t h i n g e l s e

; ; change the ” e v e r y t h i n g e l s e ” to be d e f i n e d as

; ; (box ’ undef ined) and s e t the v a l u e us ing

; ; set−box ! i n s i d e a beg in immediate ly a f t e r

; ; the d e f i n i t i o n l i s t

; ; NOTE: the box o f undef ined and set−box ! works

; ; f o r e x p l i c i t procedures , but i t i s not

; ; necessary s i n c e noth ing i s e v a l u a t e d

; ; dur ing the d e f i n i t i o n , so the d e f i n i t i o n s

; ; can a l l be in the same fragment l a t e r

[(equal? f i r s t− e l t ’ l o c a l)

(l et ∗ ([sugared−defs

(map ensugar

(stx−e (second expr− l i s t)))]

[old−val−defs

(f i l t e r (lambda (a−def)

(s tx :atom? (second (stx−e a−def))))

sugared−defs)]

[va l− ids

(map (lambda (an−expr)

(stx−e (second (stx−e an−expr))))

old−val−defs)]

[boxed−val−defs (map box− loca ls old−val−defs)]

[old− fun−defs

104

(f i l t e r (lambda (a−def)

(s tx : l i s t ? (second (stx−e a−def))))

sugared−defs)]

[boxed−fun−defs

(unbox−ids

(datum−>s tx f a l s e

(map box− loca ls old− fun−defs)

(stx− loc (second expr− l i s t)))

val− ids)])

(datum−>s tx

f a l s e

(l i s t ’ l o c a l

; ; d e f i n i t i o n s l i s t i s o l d procedure d e f i n i t i o n s

; ; f o l l o w e d by boxes o f unde f ineds f o r

; ; the v a l u e d e f i n i t i o n s

(datum−>s tx f a l s e

(append (stx−e boxed−fun−defs)

(map (lambda (symb)

‘ (d e f i n e , symb

(box ’ undef ined)))

val− ids))

(stx− loc (second expr− l i s t)))

; ; then use be ing and set−box ! to s e t

; ; the v a l u e s o f the undef ined d e f i n i t i o n s

; ; (not needed i f none were t h e r e)

(i f (empty? boxed−val−defs)

(box− loca ls (third expr− l i s t))

(cons ’ begin

(f o l d r (lambda (a−def rest−expr)

(cons

(l i s t ’ set−box !

(second (stx−e a−def))

(unbox−ids

(third (stx−e a−def))

105

val− ids))

rest−expr))

(l i s t (unbox−ids

(box− loca ls

(third expr− l i s t))

val− ids))

boxed−val−defs))))

(stx− loc expr)))]

; ; i f we have a quote , d e f i n e− s t r u c t ,

; ; or r e q u i r e statement , l e a v e i t a lone

[(or (equal? f i r s t− e l t ’ quote)

(equal? f i r s t− e l t ’ d e f i n e− s t ruc t)

(equal? f i r s t− e l t ’ require))

expr]

; ; o t h e r w i s e map a r e c u r s i v e c a l l across

; ; each sub−express ion

[e l s e (datum−>s tx f a l s e

(map box− loca ls exp r− l i s t)

(stx− loc expr))]))))

; ; ready−anormalize : s t x −> s t x

; ; consumes a syntax o b j e c t r e p r e s e n t i n g a t o p l e v e l program

; ; produces a s e m a n t i c a l l y e q u i v a l e n t program that , once ANFed

; ; w i l l be ready f o r f ragmenta t ion (i d e n t i f i e r s munged , l o c a l

; ; s t r u c t d e f i n i t i o n s l i f t e d to top l e v e l , no anonymous

; ; procedures , and l o c a l v a l u e d e f i n i t i o n s made

; ; us ing boxes and set−box !)

(d e f i n e (ready−anormalize expr)

(box− loca ls (datum−>s tx f a l s e

(map name−anon−procs

(stx−e (l i f t− s t r u c t−d e f s expr)))

(stx− loc expr))))

106

(provide/ cont rac t

[ready−anormalize (s tx : l i s t ? . −> . s tx : l i s t ?)])
� �
C.5. munge-identifiers.ss� �

#lang s−exp ” . . / lang . s s ”

(require ” anormal− frag−helpers . s s ”)

(require ” . . / r b t r e e . s s ”)

(require ” . . / . . / c o l l e c t s /moby/ runtime / stx . s s ”)

; ; format s t r i n g s to modify symbols

; ; to i n s u r e unique i d e n t i f i e r s l a t e r

(d e f i n e def−prepend ”d˜ a ˜a”)

(d e f i n e arg−prepend ” a ˜a”)

(d e f i n e struct−prepend ” s ˜ a ˜a”)

; ; symbol <: symbol symbol −> boo lean

(d e f i n e (symbol< x y)

(string<? (symbol−>string x)

(symbol−>string y)))

; ; get− id− tree :

; ; s−expr (tree−of symbol . symbol)−>(tree−of symbol . symbol)

; ; consumes a symbo l i c e x p r e s s i o n and a t r e e o f rep lacements

; ; r e t u r n s a t r e e c o n t a i n i n g a l l b i n d i n g s o f the o l d t r e e

; ; as w e l l as new b i n d i n g s r e p r e s e n t i n g rep lacements f o r anyth ing

; ; d e f i n e d at t o p l e v e l r e l a t i v e to the i n p u t t e d s−expr

(d e f i n e (get− id−tree expr base−tree)

(i f (not (cons? expr))

base−tree

(cond

[(equal? (f i r s t expr) ’ de f i n e− s t ruc t)

107

(l et ∗ ([or ig−procs (get−struct−procs expr)]

[new−name (str ing−>symbol (format struct−prepend

(gensym)

(second expr)))]

[new−procs (get−struct−procs (l i s t ’ d e f i n e− s t ruc t

new−name

(third expr)))])

(f o l d l (lambda (old−proc new−proc a−tree)

(r b t r e e− i n s e r t symbol< a−tree

old−proc

new−proc))

(r b t r e e− i n s e r t symbol< base−tree

(second expr)

new−name)

or ig−procs

new−procs))]

[(equal? (f i r s t expr) ’ d e f i n e)

(l et ([name (i f (cons? (second expr))

(f i r s t (second expr))

(second expr))])

(r b t r e e− i n s e r t symbol< base−tree name

(str ing−>symbol

(format def−prepend

(gensym) name))))]

[e l s e base−tree])))

; ; r ep lace− i d s : s t x (tree−of symbol . symbol) −> s t x

; ; consumes a syntax o b j e c t and a t r e e o f rep lacements

; ; r e t u r n s a new syntax o b j e c t wi th a l l i d e n t i f i e r s munged

; ; i f they are in the rep lacement t r e e or i f they are bound

; ; i n s i d e the curren t e x p r e s s i o n

(d e f i n e (r ep lace− i d s expr rep lacements)

(cond

; ; i f we have an i d e n t i f i e r we might need to r e p l a c e i t

108

[(symbol ? (stx−e expr))

(i f (f a l s e ?

(rbtree− lookup symbol<

rep lacements

(stx−e expr)))

expr

(datum−>s tx f a l s e

(second

(rbtree− lookup symbol<

rep lacements

(stx−e expr)))

(stx− loc expr)))]

; ; i f we have a l i s t , check the f i r s t e lement o f the l i s t

[(s tx : l i s t ? expr)

(l et ∗ ([exp r− l i s t (stx−e expr)]

[f i r s t− e l t (stx−e (f i r s t expr− l i s t))])

(cond

; ; on a d e f i n e or lambda , g e t the arguments

; ; and r e c u r s i v e l y r e p l a c e body e lements

[(or (equal? f i r s t− e l t ’ d e f i n e)

(equal? f i r s t− e l t ’ lambda))

(l et ∗ ([new−args

(i f (equal? f i r s t− e l t ’ lambda)

(stx−>datum (second expr− l i s t))

(i f (s tx : l i s t ? (second expr− l i s t))

(rest (stx−>datum (second expr− l i s t)))

empty))]

[new−replacements

(f o l d l (lambda (symb a−tree)

(r b t r e e− i n s e r t symbol<

a−tree

symb

(string−>symbol

(format arg−prepend

109

symb))))

rep lacements

new−args)])

(datum−>s tx f a l s e

(l i s t (f i r s t expr− l i s t)

(r ep lace− i d s (second expr− l i s t)

new−replacements)

(r ep lace− i d s (third expr− l i s t)

new−replacements))

(stx− loc expr)))]

; ; wi th l o c a l , g e t the b i n d i n g s from the d e f i n e s

; ; r e c u r s i v e l y r e p l a c e the d e f i n e s and the body

; ; us ing t h o s e new rep lacements

[(equal? f i r s t− e l t ’ l o c a l)

(l et ([new−replacements

(f o l d l get− id−tree

rep lacements

(stx−>datum (second expr− l i s t)))])

(datum−>s tx f a l s e

(l i s t (f i r s t expr− l i s t)

(r ep lace− i d s (second expr− l i s t)

new−replacements)

(r ep lace− i d s (third expr− l i s t)

new−replacements))

(stx− loc expr)))]

; ; i f d e f i n e− s t r u c t , we only want to munge the

; ; s t r u c t name

[(equal? f i r s t− e l t ’ d e f i n e− s t ruc t)

(datum−>s tx f a l s e

(l i s t (f i r s t expr− l i s t)

(r ep lace− i d s (second expr− l i s t)

rep lacements)

(third expr− l i s t))

(stx− loc expr))]

110

; ; i f quote or requ i re , l e a v e i t a lone

[(or (equal? f i r s t− e l t ’ quote)

(equal? f i r s t− e l t ’ require))

expr]

; ; o t h e r w i s e map over the e n t i r e e x p r e s s i o n

[e l s e (datum−>s tx f a l s e

(map (lambda (an−expr)

(r ep lace− i d s an−expr

rep lacements))

expr− l i s t)

(stx− loc expr))]))]

; ; i f n e i t h e r an i d e n t i f i e r nor a cons , do noth ing

[e l s e expr]))

; ; munge− ident i f i e r s : s t x : l i s t −> s t x : l i s t

; ; consumes a program as a syntax o b j e c t

; ; r e t u r n s the same program with a l l i d e n t i f i e r s bound

; ; in t h a t program munged us ing a gensym counter

; ; NOTE: s i n c e the gensym counter i s s t a t e f u l , t h i s r e s e t s i t ,

; ; i n s u r i n g i t a c t s as a pure f u n c t i o n

(d e f i n e (munge− ident i f i e r s expr)

(begin

(reset−gensym)

(rep lace− i d s expr (f o l d l get− id−tree

empty−rbtree

(stx−>datum expr)))))

(provide/ cont rac t [munge− ident i f i e r s

(s tx : l i s t ? . −> . s tx : l i s t ?)])
� �
C.6. helpers.ss� �

#lang s−exp ” . . / lang . s s ”

111

(require ” . . / . . / c o l l e c t s /moby/ runtime / stx . s s ”)

; ; l i f t in format ion (l i n f o) cont a in s

; ; − re turn : s t x (used as (l i s t− o f s t x) when f o l d i n g)

; ; t h a t i s the new e x p r e s s i o n

; ; − r a i s e : (l i s t− o f s t x)

; ; r e p r e s e n t i n g s p l i c e d out (or new) e x p r e s s i o n s

; ; to be r a i s e d to a h i g h e r l e v e l

(de f i n e− s t ruc t l i n f o (return r a i s e))

; ; s t a t e f u l gensym o p e r a t i o n s i n c l u d i n g a counter ,

; ; a thunk t h a t adds 1 and r e t u r n s the o l d va lue ,

; ; and a thunk to r e s e t to 0

; ; on ly the thunks are expor ted

(d e f i n e gensym−counter 0)

(d e f i n e (gensym)

(begin (set ! gensym−counter (add1 gensym−counter))

(sub1 gensym−counter)))

(d e f i n e (reset−gensym)

(set ! gensym−counter 0))

; ; l i s t− o f : (any −> boo lean) −> (any −> boo lean)

; ; consumes a p r e d i c a t e and r e t u r n s a new p r e d i c a t e t h a t checks

; ; i f i t s input i s a l i s t such t h a t each element s a t i s f i e s

; ; the o r i g i n a l p r e d i c a t e

(d e f i n e (l i s t− o f pred)

(lambda (dat)

(and (l i s t ? dat)

(andmap pred dat))))

; ; s−expr ? : datum −> boo lean

; ; consumes anyth ing and r e t u r n s t r u e i f i t i s an s−expression ,

; ; f a l s e o t h e r w i s e

112

(d e f i n e (sexp ? expr)

(or (string ? expr)

(symbol ? expr)

(number? expr)

(boolean ? expr)

(char? expr)

((l i s t− o f sexp ?) expr)))

#|

; ; symb−prepend : s t r i n g symbol −> symbol

; ; consumes a prepend s t r i n g and an o r i g i n a l symbol

; ; r e t u r n s a new symbol wi th the prepend s t r i n g prepended

; ; to the o r i g i n a l

(d e f i n e (symb−prepend prepend symb)

(string−>symbol (string−append prepend (symbol−>s t r i n g symb))))

|#

; ; ensugar : s t x −> s t x

; ; t a k e s a d e f i n e s ta tement as a syntax o b j e c t

; ; produces a s e m a n t i c a l l y e q u i v a l e n t d e f i n e s ta tement t h a t i s

; ; guaranteed to use s y n t a c t i c sugar i f d e f i n i n g a procedure

(d e f i n e (ensugar a−def)

(i f (stx−begins−with ? a−def ’ d e f i n e)

(l et ([s t x− l i s t (stx−e a−def)])

(i f (and (s tx :atom? (second s t x− l i s t))

(stx−begins−with ? (third s t x− l i s t) ’ lambda))

(datum−>s tx f a l s e

(l i s t (f i r s t s t x− l i s t)

(cons (second s t x− l i s t)

(stx−e

(second

(stx−e (third s t x− l i s t)))))

(third (stx−e (third s t x− l i s t))))

(stx− loc a−def))

113

a−def))

(error ’ ensugar

(format ” expected d e f i n i t i o n as syntax , found : ˜a”

a−def))))

; ; ge t−s truct−procs : s−expr −> (l i s t− o f symbol)

; ; consumes a s t r u c t d e f i n i t i o n in a b s t r a c t syntax

; ; r e t u r n s a l i s t o f procs generated by d e f i n i n g t h a t s t r u c t

(d e f i n e (get−struct−procs s t ruct−de f)

(l i s t ∗ (str ing−>symbol (format ”make−˜a” (second s t ruct−de f)))

(str ing−>symbol (format ”˜a?” (second s t ruct−de f)))

(f o l d l (lambda (e lt res t−procs)

(l i s t ∗ (str ing−>symbol (format ”˜a−˜a”

(second s t ruct−de f)

e lt))

(str ing−>symbol (format ”set−˜a−˜a ! ”

(second s t ruct−de f)

e lt))

res t−procs))

empty

(third s t ruct−de f))))

(provide/ cont rac t

[s t r u c t l i n f o ([return (or/c stx ? (l i s t− o f s tx ?))]

[r a i s e l i s t ?])]

[gensym (−> number ?)]

[reset−gensym (−> void ?)]

[sexp ? (any/c . −> . boolean ?)]

[ensugar (s tx ? . −> . s tx ?)]

[get−struct−procs (sexp ? . −> . (l i s t− o f symbol ?))])
� �

114

Bibliography

Aczel, P. (1977). An introduction to inductive definitions. In J. Barwise (Ed.),

HANDBOOK OF MATHEMATICAL LOGIC, Volume 90 of Studies in Logic

and the Foundations of Mathematics, pp. 739–782. Elsevier.

Aho, A. V., R. Sethi, and J. D. Ullman (1986). Compilers: Principles, Techniques,

Tools. Addison-Wesley.

Backus, J. W., F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis,

H. Rutishauser, K. Samelson, B. Vauquois, J. H. Wegstein, A. van Wijngaar-

den, and M. Woodger (1963). Revised report on the algorithm language algol 60.

Commun. ACM 6 (1), 1–17.

Baker, H. G. (1994). Cons should not cons its arguments, part ii: Cheney on the

m.t.a. Draft Version.

Bancerek, G. (2003). The fundamental properties of natural numbers. Journal of

Formalized Mathematics 1.

Barendregt, H. P. (1985). The Lambda Calculus, Its Syntax and Semantics. North

Holland.

Dijkstra, E. W. (1960). Recursive programming. Numerische Mathematik 2, 312–

318.

Felleisen, M., R. B. Findler, and M. Flatt (2009). Semantics Engineering with PLT

Redex. MIT Press.

Felleisen, M., R. B. Findler, M. Flatt, and S. Krishnamurthi (2001). How To Design

Programs. The MIT Press.

Flanagan, C., A. Sabry, B. F. Duba, and M. Felleisen (1993). The essence of compil-

ing with continuations. Conference on Programming Language Design and Im-

plementation, 237–247.

Flatt, M. (1996-2005). PLT MzScheme: Language Manual.

Friedman, D. P. and M. Wand (1984). Reification: Reflection without metaphysics.

In LFP ’84: Proceedings of the 1984 ACM Symposium on LISP and functional

programming, New York, NY, USA, pp. 348–355. ACM.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides (1994). Design patterns: Elements

of reusable object-oriented software. Addison-Wesley .

115

Hughes, J. (1989). Why functional programming matters. Comput. J. 32 (2), 98–107.

Knuth, D. E. (1997). The Art of Computer Programming. Addison-Wesley.

Krishnamurthi, S. (2007). Programming Languages Application and Interpretation.

Shriram Krishnamurthi.

Landin, P. J. (1964). The mechanical evaluation of expressions. The Computer Jour-

nal .

Loitsch, F. and M. Serrano (2006). Compiling scheme to javascript. ICFP .

Mano, M. M. and C. R. Kime (2001). Logic and Computer Design Fundamentals.

Prentice-Hall.

McCarthy, J. A. (2009). Automatically restful web applications: marking modular

serializable continuations. SIGPLAN Not. 44 (9), 299–310.

Moses, J. (1970). The function of function in lisp or why the funarg problem should

be called the environment problem. SIGSAM Bull. (15), 13–27.

Naur, P. (1963). The design of the gier algol compiler part i. BIT Numerical Math-

ematics 4, 124–140.

Pettyjohn, G., J. Clements, J. Marshall, S. Krishnamurthi, and M. Felleisen (2005).

Continuations from generalized stack inspection. International Conference on

Functional Programming .

Reynolds, J. C. (1993). The discoveries of continuations. LISP AND SYMBOLIC

COMPUTATION: An International Journal .

Sandewall, E. (1971). A proposed solution to the funarg problem. SIGSAM

Bull. (17), 29–42.

Schanzer, E. and PLT-RacketTeam. The bootstrap program.

Schinz, M. and M. Odersky (2001). Tail call elimination on the java virtual machine.

Proceedings of Babel&aps01 .

Sipser, M. (2006). Introduction To The Theory Of Computation. Course Technology,

Cengage Learning.

Sperber, M., R. K. Dybvig, M. Flatt, A. van Straaten, R. B. Findler, and

J. Matthews. Revised6 report on the algorithmic language scheme.

Sussman, G. J. and G. L. Steele (1975). Scheme: An interpreter for extended lambda

calculus. MIT AI Lab.

Tarditi, D., P. Lee, and A. Acharya (1990). No assembly required: Compiling stan-

116

dard ml to c. Technical report, School of Computer Science, Carnegie Mellon

University.

TheApacheTeam. Apache http server project.

Turbak, F. and D. Gifford (2008). Design Concepts in Programming Languages. MIT

Press.

Yoo, D., Z. Zhang, E. Cecchetti, B. Hickey, S. Krishnamurthi, C. Derici, and

N. Zimmt. Wescheme environment.

