
World With Web
A compiler from world applications to JavaScript

R. Emre Başar, Caner Derici, Çağdaş Şenol
İstanbul Bilgi University, Department of Computer Science

{reb,cderici,csenol}@cs.bilgi.edu.tr

Abstract
Our methods for interacting with computers have changed drasti-
cally over the last 10 years. As web based technologies improve,
online applications are starting to replace their offline counterparts.
In the world of online interaction, our educational tools also need
to be adapted for this environment. This paper presents WorldWith-
Web, a compiler and run-time libraries for mapping programs writ-
ten in Beginning Student Language of PLT Scheme with World
teachpack to JavaScript. This tool is intended to exploit the sharing-
enabled nature of the web to support the learning process of stu-
dents. Although it is designed as an extension to DrScheme, it is
also possible to use it in various settings to enable different meth-
ods of user interaction and collaboration.

Keywords JavaScript, web, compiler, Scheme

1. Introduction
The role of computers and World Wide Web (WWW) in our life
has gone through a series of changes through the last decade. Com-
puters used to be just a static, desktop only tool. The design of
WWW also reflected that nature by being a static source of infor-
mation. Although the WWW is designed to be a source for sharing
information [2], it constituted a producer-consumer relationship be-
tween the author and the visitor of a web site. In that scenario users
had a passive role of accessing the web, using the web browser on
their computers.

Mobile networks, wireless access and availability of powerful
mobile devices changed the way we interact with computers. This
change in the environment also triggered a change in our approach
to WWW. By the rapid growth of Web 2.0 and technologies related
to it, users dropped their role as passive consumers of information,
and became collaborators and creators of the content [11]. This
change of role is due to the fact that Web 2.0 enabled users to create
and share their content easily, without going through all the hassle
of creating and maintaining a personal web site.

While the world has changed, our teaching and development
tools mostly stayed the same. Although our tools for teaching
programming is much better than the ones we had 10 years ago,
they have not adapted to the change. One of the main drawbacks
of our current tools is that they are “offline”. We believe that in the

Proceedings of the 2009 Scheme and Functional Programming Workshop
California Polytechnic State University Technical Report CPSLO-CSC-09-03

age of blogs, social networks and other types of sharing media,
writing a program that guesses the number you had in mind is
useless unless you share it with other people.

To address this need, we developed a compiler, WorldWith-
Web1, that enables users to share their creations easily. Using
WorldWithWeb it is possible to create an interactive animation
using the “Beginning Student” language of DrScheme with the
world.ss teachpack and publish it as a standalone application that
runs in the web browser. Being able to produce a self contained,
browser-based application makes it possible for the user to share it
in all types of online media.

2. WorldWithWeb
The aim of WorldWithWeb is to create a bridge between DrScheme
programming environment and the web. This way, users will be
able to share their applications easily, enabling them to be a part
of the connected world, instead of just a consumer. Using this
approach it is much more easier for users to share their creations
and get feedback from different people around the world (not just
their friends, teachers or families) and more importantly gain online
reputation.

To accomplish this goal, we need to enable the user to speak the
“lingua franca” of the web: JavaScript [1]. Although JavaScript is a
language with a fine set of features and tons of libraries for creating
online applications, it is not a perfect fit for pedagogic purposes.
A pedagogic language, as defined by Felleisen et al [5] needs to
be simple and light as far as possible. DrScheme’s “Beginning
Student” language (BSL) and other languages at the HtDP category
are designed with this purpose in mind, and they are a perfect fit for
pedagogic methodology behind HtDP.

For this purpose we created a compiler that compiles programs
written in the BSL to JavaScript. This way, a student can create
a program in the DrScheme environment, using a language that is
designed to help his/her learning process. Then he/she can auto-
matically create a web page containing the application, sharing it
over the web with the rest of the world.

2.1 A note on Beginning Student Language and World.ss
DrScheme development environment is able to restrict, or extend
a user’s access to the underlying language. This feature is called
“Languages”. One of these languages, is the “Beginning Student”
language, which is used by HtDP [4]. This language is trimmed
down to restrict the user to a nearly-pure functional subset of
Scheme without higher-order functions. Although the BSL pro-
vides only some basic utilities for writing programs, it is possible
to extend the language with libraries called teachpacks [15].

1 For source code, screenshots, demos and other information please visit:
http://vc.cs.bilgi.edu.tr/trac/worldwithweb

121



World.ss [3] is a teachpack designed for creating interactive an-
imations in a purely functional programming style. The imperative
parts of creating an animation is handled by internals of world.ss
package. This way, the student is left with a purely functional pro-
gramming interface where he/she can design and code the anima-
tion focusing on the design methodology as imposed by HtDP.

3. Related Work
The Moby Scheme Compiler [8] is an effort to make programs writ-
ten in BSL and world.ss available on mobile devices. It also con-
tains some extensions to world.ss package. Using those extensions,
it is possible for the user to create applications that exploits the ex-
tra functionality (like GPS or tilting detection) provided by those
devices, while staying within the BSL. While Moby opens up new
possibilities in front of students for creating applications that runs
on devices other than classical PC’s, it does not solve the problem
of sharing those applications with each other.

scheme2js [9] is a compiler from Scheme to JavaScript, in-
tended to provide complete interoperability between JavaScript and
Scheme. While it has similar goals with WorldWithWeb, it should
be considered as a foreign function interface between Scheme and
JavaScript. Although it is possible to use scheme2js as a tool for
implementing low level interfaces of WorldWithWeb, the complex
relations between PLT Scheme GUI libraries and underlying OS
makes it impossible to use that kind of low-level implementation
directly.

Processing.js2 is an implementation of the Processing [14] for
JavaScript. Although it presents the same API to the users, it does
not provide any tools for converting from Java to JavaScript au-
tomatically. To be able to run a Processing application with Pro-
cessing.js the user needs to re-write the entire application using
JavaScript.

O’browser, which is developed within the Ocsigen project3 is a
virtual machine for OCaml, written in JavaScript. It supports load-
ing OCaml bytecode directly into the VM without any need for
recompiling. Although it provides the advantages of a statically
typed functional programming language, users need to have pre-
vious knowledge about HTML and DOM to create applications for
the web. This disadvantage creates a barrier for the beginning stu-
dent to create applications using that framework.

4. Implementation
The design of WorldWithWeb is based on two distinct parts. One
part is the core compiler, which translates the Scheme code to Java-
Script. The second part is the runtime libraries, implemented in
pure JavaScript. This strict separation allows us to freely experi-
ment on the implementation of runtime, while keeping the compiler
as small as possible.

4.1 Compiler
Since the web provides the user with many different methods (i.e.
blogs, forums, social networking sites) for publishing the content,
our implementation also needs to be adaptable to various media.
Therefore, WorldWithWeb is designed as a library that can be used
by various frontends to create final output. This way, the user can
create new frontends that can read code from any kind of resource
and to create output that is appropriate for the destination medium.
Currently the only output format is HTML, linked with required
JavaScript libraries and user code.

The output of the compiler is a pinfo structure which is defined
as:

2 http://www.processingjs.org
3 http://www.ocsigen.org

(define-struct pinfo (code
function-mappings
tests
images))

Code field of the structure is the generated JavaScript code for
the program. The source code is contained as a string, so it can be
used directly with display or similar functions to create the main
JavaScript file.

Function mappings are provided as a bridge between BSL func-
tions and the JavaScript libraries that implements them. They
simply rename the functions available from the libraries to their
Scheme counterparts. Since the inclusion of this map might be ac-
complished using different methods in different environments, it’s
left to the backend to decide to include them or not.

The tests in DrScheme testing framework need a different evalu-
ation order. They need to be evaluated after all of the other top-level
expressions. Otherwise it becomes hard to test functions, especially
for mutually recursive cases. To satisfy this need, tests are stored
separate from the user’s code and presented as extra information to
the frontend application. This also allows the frontend to remove
the tests if the destination platform is not appropriate for running
tests.

DrScheme allows a user to embed images directly into source
code. Since there is no direct method for accomplishing this in
JavaScript, through the compilation process, embedded images are
extracted from source code, and saved as image files to the disk.
Images in source code are then replaced with a function call that
loads those images on demand. The images field of the pinfo
structure contains these names, in the order of appearance in the
source code.

4.2 Data type correspondence
One of the most important challenges when translating one lan-
guage to another is to define the data structures of the source lan-
guage in the terms of destination language. Scheme, and more gen-
erally Lisp family of languages, are especially famous in that area
because of their unorthodox nature of implementing various lan-
guage features, such as numbers, Object Oriented Programming
techniques etc... While JavaScript has some properties of functional
programming languages, like higher order functions, it also lacks
some features, like exact numbers or symbols of Scheme. There-
fore, while it is possible to create a one to one correspondence in
some data types like functions or booleans, many other data types
requires special handling.

4.2.1 Numbers
Numbers in WorldWithWeb follows the Scheme number model
closely, the numeric tower is implemented fully, including support
for big numbers. The support for exact numbers is implemented
using Matthew Crumley’s BigInteger library4.

The numeric tower is implemented using a class hierarchy that
matches the hierarchy of numbers in the numeric tower. Inexact
numbers of Scheme are double precision floating point numbers
as defined by IEEE754 [7]. Since this model exactly fits to the
JavaScript number model, JavaScript numbers are directly used for
implementing inexact numbers.

4.2.2 Symbols
Symbols are one of the most interesting data structures that differ-
entiate Lisp family of languages from others. Although a symbol is
similar to a string in other languages, unlike a string it is guaran-
teed to be unique. While in many other scenarios symbols might

4 http://silentmatt.com/biginteger/

122 Scheme and Functional Programming, 2009



be simply represented as strings, keeping the uniqueness invari-
ant is important in this case, since the identity equality depends
on that uniqueness feature. To accomplish this, symbol construc-
tors are wrapped within a function that maintains a hash table of
symbols produced so far. That way, if a requested name is already
in the symbol table, it is returned. If the symbol is not in that table,
a new symbol object is created and added to the table.

4.2.3 Characters
In many programming languages strings are just modeled as an ar-
ray of characters. JavaScript, however, follows a different approach.
In JavaScript there is no concept of a character. Instead, characters
are modeled as strings with length 1. While a pragmatic approach
might recommend to implement the same method, it is impossible
to follow this method for implementing Scheme characters.

In Scheme, strings and characters are two distinct data types.
There are also many functions that operate between these domains.
For this reason, we decided to follow the Scheme approach and
put a clear distinction between characters and strings. A character
in WorldWithWeb is represented as a simple structure, holding an
exact number, the Unicode code point of that character.

4.2.4 Structures
Structures in Scheme are simple data types to hold compound data.
In BSL, a structure definition consists of a name and a list of
fields. That definition introduces not only the structure itself but
also a constructor, field accessors and equality tester. Since BSL is
a purely functional subset of Scheme, structure definitions in BSL
do not introduce field mutators.

Structures in WorldWithWeb are modeled as objects in the Java-
Script’s prototype based object system. A structure definition intro-
duces an object which is built by the constructor function. Fields of
the structure correspond to the the object’s fields. Also field acces-
sors and equality tester are defined as ordinary functions that work
on object’s fields.

4.2.5 Images
Being able to embed images directly in source code of a program is
one of the most interesting features of DrScheme. This way, images
can be used and modified like any other value in the language.
Unfortunately JavaScript has no support for directly embedding
images in the source code5. To handle this problem in a compatible
way, images in the source code are saved as resources and they are
replaced with a call to a function which loads the image on demand.

4.3 JavaScript Libraries
The second part of WorldWithWeb is the supporting libraries, writ-
ten in pure JavaScript. These libraries imitate the primitive func-
tions found in BSL and the world.ss teachpack. The libraries are
designed to be exact imitations of their Scheme counterparts. For
this reason, they consume the same number of parameters, produce
same types of values as their Scheme counterparts and raise the
same kinds of error messages.

4.3.1 Beginning Student Language
BSL contains the most basic functions for users to create applica-
tions. While its contents are limited to a subset of Scheme, it is big
enough to let the users create useful programs. It mainly consists of
number and string operators.

The BSL functions are implemented as ordinary JavaScript
functions, using the datatypes mentioned above. The naming of

5 Actually, images can be embedded in data urls with base64 encoding, but
this feature is not available in all browsers.

the functions follows the naming scheme used by Moby Scheme
Compiler.

4.3.2 Testing
There are two motivations behind the testing implementation of
WorldWithWeb. First motivation is that testing is a crucial part of
programming education. Getting used to writing proper test cases is
important and the user should get feedback for his/her tests. While
the user can test his/her program in DrScheme environment, it is
also an extra safety measure to see that his/her tests pass on the
web interface too.

Secondly, all projects need testing. WorldWithWeb is no ex-
ception. All test cases for WorldWithWeb libraries are written in
Scheme and then compiled to JavaScript. This way we can be sure
that as long as the tests pass in both environments our libraries are
fully compatible with their Scheme counterparts.

The Scheme testing library provides three testing primitives.
Two of them, check-expect and check-within are no different
than any other function call. They are directly implemented as func-
tions. On the other hand check-error, which checks if a given ex-
pression produces a certain error message cannot be implemented
directly.

The error mechanism in JavaScript works using exceptions and
in the evaluation order of JavaScript it is not possible to catch
exceptions that happen while the arguments of a function are being
evaluated. To handle this case, WorldWithWeb compiler wraps the
expression that is expected to raise the error in an anonymous
function, effectively delaying the evaluation. Later, when the test
is evaluated the function is called and the expected exception is
catched by ordinary exception handlers, and tested against the
expected value.

4.3.3 Images
The world.ss teachpack consists of two parts. One part is the im-
age.ss library which concentrates on creation and manipulation of
images and shapes in various ways. The other part is the world.ss
which manages the events from the outside world and controls the
flow of world state between handlers for those events.

The images library is an imitation of image.ss teachpack found
in DrScheme and used by the world.ss package. The library pro-
vides all of the functions that enables user to create static images
and compose them in various ways. The JavaScript implementation
also provides same primitive shapes and covers most of the image
manipulation functions.

Images in WorldWithWeb are modeled as objects. All image
objects provide a set of methods that makes it possible to use
them in a generic manner. These methods include width & height
calculations, pinhole alignment and a method called draw.

The Scheme implementation of images relies on the underlying
drawing primitives, provided by the GUI [6] framework. The im-
ages in that implementation are created as bitmap instances. This
method allows the images library to use the methods of bitmap ob-
jects for all kinds of width/height calculations. Unfortunately, this
approach is not possible in WorldWithWeb since it will require the
implementation of a GUI style drawing system in JavaScript. Width
and height calculations in WorldWithWeb is done directly by im-
ages themselves. For most of the primitive shapes, that approach
works directly by applying appropriate formula for the shape. It is
also possible to calculate this data for composite images. Although
most shapes are implemented in a straightforward way, some of
them (like triangles) do not produce the same result with their
Scheme counterparts. This approach also fails on calculating the
width and height of text objects.

The main challenge about images is the drawing of images on an
HTML canvas element. The canvas element is a simple container,

Scheme and Functional Programming, 2009 123



for a drawing context object. The drawing context provides simple
drawing primitives like lines, bezier curves etc... The drawing of
a world scene is accomplished by passing this drawing context
through all the image objects in the current scene.

All image objects are designed to have a method called draw
which has three parameters. The first parameter is a drawing con-
text, provided by a canvas element. The second and third param-
eters are the coordinates that the image object should draw it-
self. While ordinary objects just draw themselves in the drawing
context, overlays, scenes and other composite objects manage the
drawing of their sub-objects on the drawing context, passing the
context from one element to another in the correct order.

4.3.4 World
As we mentioned in the previous topic, the world.ss library pro-
vides the abstraction mechanisms for the events coming from out-
side world. Although this is the main role of world.ss, it also pro-
vides some extra drawing primitives for creating “scenes”.

In world.ss terminology, a scene is an image with a pinhole
at 0,0 coordinates. For this reason, we implemented scenes as
an extension of ordinary drawing primitives, provided by images
library.

The main role of the world.ss is handling events. This is im-
plemented in terms of timers and DOM events [13]. Mainly all
handlers are defined as wrappers around the user-defined handler
functions. For each event, the world is updated by the results of the
handler function, and redrawn.

There are mainly three kinds of events in world.ss model. The
first kind of event is the tick event, which is independent of the user
interaction. It is the simplest event, which calls the handler function
in each time tick. This handler is implemented as a JavaScript
timer. JavaScript provides a setTimeout function which calls the
provided handler in given periods.

The second kind of event is the user input. In plain world.ss,
the only input user can provide is by using keyboard and mouse.
The input from those devices are handled by key and mouse
event handlers. In JavaScript, it is possible to access these events
using event listeners. Each DOM object provides an interface,
addEventListener, which allows the user to hook into the events
occurring on that element. Using this interface, handler functions
can access the details of the event (character code, mouse coordi-
nates, modifier keys etc...). The handler wrappers for mouse and
keyboard events get the raw JavaScript events and provide that in-
formation into user’s handler functions in a format that imitates the
Scheme interface.

The last event type is the redraw events. Redraw of the scene is
actually not a real event but it is triggered by all kinds of handler
events for the scene to represent the current state of the world in the
window. Redraw events are currently invoked by handler functions,
in a manual fashion. Each handler function invokes the redraw
handler after changing the world.

Another handler, which is not tied to an event is stop-when.
The stop-when handler decides when the animation should stop.
When the condition checked by the handler is satisfied, all other
event handling stops, effectively stopping the animation.

5. Possible Applications
While WorldWithWeb is mainly designed to be used within DrScheme
programming environment, it is possible to use it as a library to pro-
vide different kinds of functionality from all types of applications.
This way user might be provided with a richer environment which
is adapted to his/her development environment. While it is possible
to use the library to integrate user’s application to various web ser-
vices as discussed before, it might also be used in many different
setups providing different services.

5.1 Interactive Environment
As Papert [12] noted in 1980’s, programming plays an important
role in a child’s learning process. Unfortunately, many of the stu-
dents around the world have no access to a personal computer of
their own and need to use public computers instead. Because of
the locked down nature of those public access computers, most of
the time, the student will not have access to DrScheme environ-
ment. For many types of software, this problem is solved by rich
Internet applications. This way, users have the opportunity to ac-
cess their spreadsheets, instant messaging systems and all kinds of
documents from anywhere in the world.

Following this idea of online applications, it is possible to create
an online programming editor that will provide a simple editing
environment for Scheme code. The user can write his/her code in
that environment, and then send the code to the server by clicking
the “Run” button on the web page. The server will compile the
application to JavaScript and send it as a response to the user’s web
browser, to be evaluated. That way, the user can see the result of
his/her code directly in the web browser without the need for any
other tool.

5.2 Gadget-like applications
As we mentioned earlier, sharing lies in the heart of web. While
there are many different methods for sharing different kinds of con-
tent, social networking sites became hubs where the sharing gets
centralized. One of the most important feature of social network-
ing sites are the “gadgets” they present to their users. A gadget is
a small application, created using JavaScript and HTML. With ini-
tiatives like OpenSocial [10], it is possible to create a gadget and
share it with other people across different social networking sites.

Since gadgets are just composed of HTML and JavaScript em-
bedded inside a meta data container, it is possible to use World-
WithWeb to create these gadgets automatically. All that’s required
is to create a frontend that generates appropriate XML structure
from the generated code.

Enabling this kind of sharing might be a real boost for the user
motivation, since the user’s application directly becomes a part of
a network that is built especially for sharing purposes.

6. Conclusion & Future Work
World.ss is a library that provides abstractions that enables users to
create complicated animations and simulations without going into
the imperative roots of creating an animation. WorldWithWeb takes
this one step forward, providing the user to share his/her creation
on the web without worrying about the underlying protocols or
languages. Although it does provide the user with everything he/she
needs to create an interactive animation, there is still room for
improvement.

6.1 Universe.ss
Universe.ss is a teachpack extending world.ss by enabling the
user to create multiuser client/server applications like multiplayer
games while staying in a purely functional programming environ-
ment. The core concept in universe.ss is the “message”. A message
is a simple packet of information contained in an S-Expression
[15]. The client environment communicates with the server, and
other clients using messages.

The application model proposed by universe.ss fits perfectly
into the development model of Web 2.0 applications. A Web 2.0
application communicates with the server and other clients using
simple messages encoded using various methods. One of these en-
coding methods is the JavaScript Object Notation (JSON) which
makes it possible to encode any kind of JavaScript data in a simple
text only format. Most Web 2.0 applications work by passing Java-

124 Scheme and Functional Programming, 2009



Script objects encoded in JSON format between client and server.
The server application distributes this data to other clients using
polling techniques.

This correspondence in methodology makes it possible to ex-
tend WorldWithWeb to cover universe.ss. The implementation of
single user applications in universe.ss is trivial, since that part of the
universe.ss is nearly the same with world.ss. The main difference
of universe.ss shows itself in multi-user applications. To implement
multi-user applications, the messages need to be encapsulated and
sent/received using XMLHttpRequest’s [16].

The implementation of the server side is a much more interest-
ing problem. That application can be modeled as a proxy in front
of the universe.ss server. The proxy can capture the JSON encoded
objects, create the corresponding Scheme object, and pass it to the
actual universe.ss server. Then the inverse of this method can be
used to encode objects from universe.ss server going to the clients.
The most important advantage of this method for implementing the
server side is that the server application can be used as-is without
any modifications.

6.2 Better Scheme Semantics
As noted by Loitsch and Serrano, compiling Scheme to JavaScript
while keeping the Scheme semantics intact is not a simple process.
The lack of first class continuations and similar techniques makes
it impossible to make a direct translation between two languages.

Since WorldWithWeb just focuses on a subset of Scheme lan-
guage, some of these problems (like first class continuations) disap-
pear by themselves. However, some other things like exact numbers
and proper tail calls remains. As we mentioned earlier, WorldWith-
Web already implements exact numbers using a fractional numbers
library.

Proper tail calls are currently not implemented. While this is
not a serious problem for small applications, as the applications get
more complicated, it is possible to hit a memory barrier. We are
currently working on various methods for implementing tail calls
in JavaScript.

6.3 Other Language Levels
While compiling BSL programs might motivate the student to a
certain level, the tools should be available to him/her through the
learning process. This requires adding support for other language
levels to the compiler.

Although it is rather simple process to add support for language
levels like “BSL with List Abbreviations” or “Intermediate Stu-
dent” by just extending the library functions, the addition of “Inter-
mediate Student with Lambda” language will require the addition
of higher order functions and anonymous functions. This addition,
probably will not be so hard, considering that JavaScript already
has support for higher order functions and anonymous functions.

Adding the “Advanced Student” language will probably be the
hardest part, since that language level introduces mutation. Intro-
duction of mutation into the language creates two important re-
quirements for the compiler: Sequencing and function call seman-
tics.

In purely functional languages the evaluation order of the ex-
pressions do not effect the result of the computation. Breaking pu-
rity by introducing mutation requires that expressions are evalu-
ated in correct order. When values can be mutated, the programmer
should be able to know beforehand when the mutation will happen
to be able to reason about the program. For this reason compiling
a language with mutation should not effect the evaluation order.
Since JavaScript is not designed to be a purely functional language,
it already contains proper sequencing constructs. The only thing to
be done is to make sure that JavaScript sequencing semantics are in
correspondence with the Scheme sequencing semantics.

The second problem is preserving the function call semantics. In
the presence of mutation, the results from functions might depend
on the function call strategy used. To make sure that the JavaScript
version of the program produces the same results with Scheme
version, function calls might require special treatment.

Acknowledgments
We would like to acknowledge Chris Stephenson, M. Fatih Köksal
and E. Pınar Hacıbeyoğlu for their support through the develop-
ment process of WorldWithWeb and the preparation of this paper.

References
[1] ECMAScript Language Specification. 1999.
[2] Tim Berners-Lee. Information management: A proposal. CERN,

March, 1989.
[3] Matthias Felleisen, Robert B. Findler, Kathi Fisler, Matthew Flatt,

and Shriram Krishnamurthi. How to design worlds, 2008.
[4] Matthias Felleisen, Robert B. Findler, Matthew Flatt, and Shriram

Krishnamurthi. How to Design Programs. MIT Press Cambridge,
Mass, 2001.

[5] Matthias Felleisen, Robert B. Findler, Matthew Flatt, and Shriram
Krishnamurthi. Structure and interpretation of the computer science
curriculum. Journal of Functional Programming, 2004.

[6] Matthew Flatt, Robert B. Findler, and John Clements. GUI: PLT
graphics toolkit. Reference Manual PLT-TR2009-gui-v4.1.5, PLT
Scheme Inc., March 2009.

[7] Matthew Flatt and PLT Scheme. Reference: PLT scheme. Reference
Manual PLT-TR2009-reference-v4.1.5, PLT Scheme Inc., March
2009.

[8] Shriram Krishnamurthi. The moby scheme compiler for smartphones.
In Proceedings of the International Lisp Conference, 2009.

[9] Florian Loitsch and Manuel Serrano. Compiling Scheme to
JavaScript.

[10] J. Mitchell-Wong, R. Kowalczyk, A. Roshelova, B. Joy, and H. Tsai.
Opensocial: From social networks to social ecosystem. pages 361–
366, Feb. 2007.

[11] Tim OReilly. What is web 2.0: Design patterns and business models
for the next generation of software.

[12] Seymour Papert. Redefining childhood: The computer presence as an
experiment in developmental psychology. In Proceedings of the 8th
World Computer Congress: IFIP Congress, 1980.

[13] Tom Pixley. Document object model (DOM) level 2 events
specification. W3C Recommendation, November, 2000.

[14] Casey Reas, Ben Fry, and John Maeda. Processing: A Programming
Handbook for Visual Designers and Artists. MIT Press Cambridge,
Mass, 2007.

[15] PLT Scheme. Teachpacks. Reference Manual PLT-TR2009-
teachpack-v4.1.5, PLT Scheme Inc., March 2009.

[16] Anne van Kesteren and Dean Jackson. The XMLHttpRequest object.
World Wide Web Consortium, Working Draft WD-XMLHttpRequest-
20070618, 2007.

Scheme and Functional Programming, 2009 125


